含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究

张良静, 顾慧燕, 毕二平. 含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究[J]. 环境化学, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
引用本文: 张良静, 顾慧燕, 毕二平. 含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究[J]. 环境化学, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
ZHANG Liangjing, GU Huiyan, BI Erping. Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups[J]. Environmental Chemistry, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
Citation: ZHANG Liangjing, GU Huiyan, BI Erping. Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups[J]. Environmental Chemistry, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703

含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究

  • 基金项目:

    国家自然科学基金(41472231)资助.

Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups

  • Fund Project: Supported by the National Natural Science Foundation of China (41472231).
  • 摘要: 利用多参数线性自由能关系(PP-LFERs)模型预测有机物的有机碳-水分配系数(Koc)是一种高效经济的估算方法.基于广泛收集的文献中165种(18类)化合物的lgKoc和分子结构参数(E、S、A、B、V)值,通过多元线性回归方法,用建模组132种化合物构建了两种预测多种类有机物lgKoc的PP-LFERs模型:EV模型和简化的V模型.它们的复相关系数分别为0.92和0.87,标准误差分别为0.37和0.49.用验证组33种化合物对模型进行了验证的结果表明,两种模型均具有较好的预测性和稳健性.在数据集中包括有8种典型的高氟和硅氧烷类化合物,对于硅氧烷类化合物,EV模型和V模型的实测值和预测值的均方根误差分别为0.38和0.16;对于高氟类化合物,两模型的均方根误差分别为0.66和0.75,说明了模型对这两类化合物预测的准确性.最后,从分子间作用力角度分析了有机物的吸附机理,得出空穴作用和色散作用是非极性化合物吸附的主要动力,而在极性化合物中,空穴作用和氢键作用最为显著.
  • 加载中
  • [1] ENDO S, GOSS K U. Applications of polyparameter linear free energy relationships in environmental chemistry[J]. Environmental Science & Technology, 2014, 48(21): 12477-12491.
    [2] SHAO Y H, LIU J N, WANG M X, et al. Integrated QSPR models to predict the soil sorption coefficient for a large diverse set of compounds by using different modeling methods[J]. Atmospheric Environment, 2014, 88: 212-218.
    [3] NGUYEN T H, GOSS K U, BALL W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments[J]. Environmental Science & Technology, 2005, 39(4): 913-924.
    [4] LU Z J, MACFARLANE J K, GSCHWEND P M. Adsorption of organic compounds to diesel soot: Frontal analysis and polyparameter linear free-energy relationship[J]. Environmental Science & Technology, 2016, 50(1): 285-293.
    [5] GOSS K U, BRONNER G, HARNER T, et al. The partition behavior of fluorotelomer alcohols and olefins[J]. Enviromental Science & Technology, 2006, 40(11): 3572-3577.
    [6] PANAGOPOULOS D, KIERKEGAARD A, JAHNKE A, et al. Evaluating the salting-out effect on the organic carbon/water partition ratios (KOC and KDOC) of linear and cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Journal of Chemical & Engineering Data, 2016, 61(9):3098-3108.
    [7] ENDO S, GOSS K U. Predicting partition coefficients of polyfluorinated and organosilicon compounds using Polyparameter Linear Free Energy Relationships (PP-LFERs)[J]. Environmental Science & Technology, 2014, 48(5): 2776-2784.
    [8] LI M S, WANG R, FU KUO D T, et al. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon[J]. Environmental Science: Processes & Impacts, 2017, 19(3): 276-287.
    [9] ABRAHAM M H. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes[J]. Chemical Society Reviews, 1993, 22(2): 73-83.
    [10] ABRAHAM M H, IBRAHIM A, ZISSIMOS A M. Determination of sets of solute descriptors from chromatographic measurements[J]. Journal of Chromatography A, 2004, 1037(1-2):29-47.
    [11] TVLP H C, GOSS K U, SCHWARZENBACH R P, et al. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals[J]. Environmental Science & Technology, 2008, 42(6): 2034-2040.
    [12] BRONNER G, GOSS K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon[J]. Environmental Science & Technology, 2011, 45(4): 1313-1319.
    [13] POOLE C F, ATAPATTU S N, POOLE S K, et al. Determination of solute descriptors by chromatographic methods[J]. Analytica Chimica Acta, 2009, 652(1-2): 32-53.
    [14] WECKWERTH J D, VITHA M F, CARR P W. The development and determination of chemically distinct solute parameters for use in linear solvation energy relationships[J]. Fluid Phase Equilibria, 2001, 183-184: 143-157.
    [15] 姚义鸣, 赵洋洋, 孙红文. 天津市大气中全氟化合物挥发性前体物的分布和季节变化[J]. 环境化学, 2016, 35(7):1329-1336.

    YAO Y M, ZHAO Y Y, SUN H W. The atmospheric distribution and seasonal variation of volatile perfluoroalkyl substance precursors in Tianjin[J]. Environmental Chemistry, 2016, 35(7): 1329-1336(in Chinese).

    [16] KROGESTH I S, WHELAN M J, ChRISTENSEN G N, et al. Understanding of cyclic volatile methyl siloxane fate in a high latitude lake is constrained by uncertainty in organic carbon-water partitioning[J]. Environmental Science & Technology, 2017, 51(1): 401-409.
    [17] 吴婧娴, 栾晓新, 李清波, 等. 市政污水中环形挥发性甲基硅氧烷浓度水平与去除效率[J]. 环境化学, 2016, 35(9):1833-1841.

    WU J X, LUAN X X, LI Q B, et al. Occurrence and removal efficiency of cyclic volatile methylsiloxanes in municipal wastewater[J]. Environmental Chemistry, 2016, 35(9): 1833-1841(in Chinese).

    [18] BORGÅ K, FJELD E, KIERKEGAARD A, et al. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout[J]. Environmental Science & Technology, 2013, 47(24): 14394-14402.
    [19] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211: 124-131.
    [20] PANAGOPOULOS D, JAHNKE A, KIERKEGAARD A, et al. Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Environmental Science & Technology, 2015, 49(20): 12161-12168.
    [21] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304.
    [22] KIM M, LI L Y, GRACE J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196: 462-472.
    [23] ENDO S, GRATHWOHL P, HADERLEIN S B, et al. LFERs for soil organic carbon-water distribution coefficients (KOC) at environmentally relevant sorbate concentrations[J]. Environmental Science & Technology, 2009, 43(9): 3094-3100.
    [24] SABLJIC A, GUSTEN H, VERHAAR H, et al. QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations[J]. Chemosphere, 1995, 31(11-12): 4489-4514.
    [25] SCHVVRMANN G, EBRET R U, KVHNE R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure[J]. Environmental Science & Technology, 2006, 40(22): 7005-7011.
    [26] KIPKA U, DI TORO D M. A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments[J]. Environmental Toxicology and Chemistry, 2011, 30(9): 2013-2022.
    [27] GOSS K U, SCHWARZENBACH R P. Linear Free Energy Relationships used to evaluate equilibrium partitioning of organic compounds[J]. Environmental Science & Technology, 2001, 35(1): 1-9.
    [28] ABRAHAM M H, POOLE C F, POOLE S K. Classification of stationary phases and other materials by gas chromatography[J]. Journal of Chromatography A, 1999, 842(1-2): 79-114.
    [29] ABRAHAM M H, BENJELLOUN-DAKHAMA N, GOLA J M R, et al. Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties[J]. New Journal of Chemistry, 2000, 24(10): 825-829.
    [30] 陈望香, 朱润良, 葛飞, 等. 应用多元线性溶剂化能关系研究有机膨润土的吸附特征[J]. 环境科学学报, 2011, 31(5): 1019-1025.

    CHEN W X, ZHU R L, GE F, et al. Investigation on the sorptive characteristics of organobentonites using a linear solvation energy relationship[J]. Acta Scientiae Circumstantiae, 2011, 31(5): 1019-1025(in Chinese).

    [31] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR 模型内部和外部验证方法综述[J]. 环境化学, 2013, 32(7): 1205-1211.

    QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model: Review[J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese).

    [32] GRAMATICA P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701.
    [33] XIA X R, MONTEIRO-RIVIERE N A, RIVIERE J E. An index for characterization of nanomaterials in biological systems[J]. Nature Nanotechnology, 2010, 5(9): 671-675.
    [34] VITHA M, CARR P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. Journal of Chromatography A, 2006, 1126(1-2):143-194.
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览数:  1847
  • PDF下载数:  309
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-17
  • 刊出日期:  2018-05-15
张良静, 顾慧燕, 毕二平. 含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究[J]. 环境化学, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
引用本文: 张良静, 顾慧燕, 毕二平. 含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究[J]. 环境化学, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
ZHANG Liangjing, GU Huiyan, BI Erping. Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups[J]. Environmental Chemistry, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703
Citation: ZHANG Liangjing, GU Huiyan, BI Erping. Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups[J]. Environmental Chemistry, 2018, 37(5): 1045-1053. doi: 10.7524/j.issn.0254-6108.2017081703

含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究

  • 1. 中国地质大学(北京)水资源与环境学院, 水资源与环境工程北京市重点实验室, 北京, 100083
基金项目:

国家自然科学基金(41472231)资助.

摘要: 利用多参数线性自由能关系(PP-LFERs)模型预测有机物的有机碳-水分配系数(Koc)是一种高效经济的估算方法.基于广泛收集的文献中165种(18类)化合物的lgKoc和分子结构参数(E、S、A、B、V)值,通过多元线性回归方法,用建模组132种化合物构建了两种预测多种类有机物lgKoc的PP-LFERs模型:EV模型和简化的V模型.它们的复相关系数分别为0.92和0.87,标准误差分别为0.37和0.49.用验证组33种化合物对模型进行了验证的结果表明,两种模型均具有较好的预测性和稳健性.在数据集中包括有8种典型的高氟和硅氧烷类化合物,对于硅氧烷类化合物,EV模型和V模型的实测值和预测值的均方根误差分别为0.38和0.16;对于高氟类化合物,两模型的均方根误差分别为0.66和0.75,说明了模型对这两类化合物预测的准确性.最后,从分子间作用力角度分析了有机物的吸附机理,得出空穴作用和色散作用是非极性化合物吸附的主要动力,而在极性化合物中,空穴作用和氢键作用最为显著.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回