含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究
Polyparameter linear free energy relationships (PP-LFERs) for predicting partition coefficients of organic compounds with specific functional groups
-
摘要: 利用多参数线性自由能关系(PP-LFERs)模型预测有机物的有机碳-水分配系数(Koc)是一种高效经济的估算方法.基于广泛收集的文献中165种(18类)化合物的lgKoc和分子结构参数(E、S、A、B、V)值,通过多元线性回归方法,用建模组132种化合物构建了两种预测多种类有机物lgKoc的PP-LFERs模型:EV模型和简化的V模型.它们的复相关系数分别为0.92和0.87,标准误差分别为0.37和0.49.用验证组33种化合物对模型进行了验证的结果表明,两种模型均具有较好的预测性和稳健性.在数据集中包括有8种典型的高氟和硅氧烷类化合物,对于硅氧烷类化合物,EV模型和V模型的实测值和预测值的均方根误差分别为0.38和0.16;对于高氟类化合物,两模型的均方根误差分别为0.66和0.75,说明了模型对这两类化合物预测的准确性.最后,从分子间作用力角度分析了有机物的吸附机理,得出空穴作用和色散作用是非极性化合物吸附的主要动力,而在极性化合物中,空穴作用和氢键作用最为显著.
-
关键词:
- 线性自由能关系(LFERs) /
- 分子结构参数 /
- 有机碳-水分配系数 /
- 高氟和硅氧烷类化合物 /
- 吸附 /
- 分子作用力
Abstract: Polyparameter linear free energy relationships (PP-LFERs) have been proven to be an efficient and economic evaluation method to predict organic carbon-water partition coefficient (Koc) of organic compounds. Based on the values of lgKoc and molecular descriptors of 165 compounds (18 classes) widely collected in the literatures,two PP-LFERs models,namely EV model and V model for predicting lgKoc,were calibrated with data for a set of 132 compounds,using multiple linear regression method. The values of multiple correlation coefficients were 0.92 and 0.87,respectively. The standard errors between experimental lgKoc and those predicted in the EV model and V model were 0.37 and 0.49,respectively. A set of 33 compounds were utilized for validation. The results showed that the two models had good predictability and robustness. Note that eight typical highly fluorinated and siloxane compounds were included in the data set,and their predictions were sufficiently accurate. For siloxane compounds,root-mean-squared-error between experimental lgKoc and predicted ones was 0.38 in the EV model and 0.16 in the V model;and for highly fluorinated compounds,root-mean-squared-error was 0.66 in the EV model and 0.75 in the V model. Finally,the sorption mechanism was discussed based on the molecular interactions. The effect of cavity and dispersion played an important role in the sorption of nonpolar compounds,while cavity formation and H-bonding interaction were dominant in the sorption of polar compounds. -
-
[1] ENDO S, GOSS K U. Applications of polyparameter linear free energy relationships in environmental chemistry[J]. Environmental Science & Technology, 2014, 48(21): 12477-12491. [2] SHAO Y H, LIU J N, WANG M X, et al. Integrated QSPR models to predict the soil sorption coefficient for a large diverse set of compounds by using different modeling methods[J]. Atmospheric Environment, 2014, 88: 212-218. [3] NGUYEN T H, GOSS K U, BALL W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments[J]. Environmental Science & Technology, 2005, 39(4): 913-924. [4] LU Z J, MACFARLANE J K, GSCHWEND P M. Adsorption of organic compounds to diesel soot: Frontal analysis and polyparameter linear free-energy relationship[J]. Environmental Science & Technology, 2016, 50(1): 285-293. [5] GOSS K U, BRONNER G, HARNER T, et al. The partition behavior of fluorotelomer alcohols and olefins[J]. Enviromental Science & Technology, 2006, 40(11): 3572-3577. [6] PANAGOPOULOS D, KIERKEGAARD A, JAHNKE A, et al. Evaluating the salting-out effect on the organic carbon/water partition ratios (KOC and KDOC) of linear and cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Journal of Chemical & Engineering Data, 2016, 61(9):3098-3108. [7] ENDO S, GOSS K U. Predicting partition coefficients of polyfluorinated and organosilicon compounds using Polyparameter Linear Free Energy Relationships (PP-LFERs)[J]. Environmental Science & Technology, 2014, 48(5): 2776-2784. [8] LI M S, WANG R, FU KUO D T, et al. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon[J]. Environmental Science: Processes & Impacts, 2017, 19(3): 276-287. [9] ABRAHAM M H. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes[J]. Chemical Society Reviews, 1993, 22(2): 73-83. [10] ABRAHAM M H, IBRAHIM A, ZISSIMOS A M. Determination of sets of solute descriptors from chromatographic measurements[J]. Journal of Chromatography A, 2004, 1037(1-2):29-47. [11] TVLP H C, GOSS K U, SCHWARZENBACH R P, et al. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals[J]. Environmental Science & Technology, 2008, 42(6): 2034-2040. [12] BRONNER G, GOSS K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon[J]. Environmental Science & Technology, 2011, 45(4): 1313-1319. [13] POOLE C F, ATAPATTU S N, POOLE S K, et al. Determination of solute descriptors by chromatographic methods[J]. Analytica Chimica Acta, 2009, 652(1-2): 32-53. [14] WECKWERTH J D, VITHA M F, CARR P W. The development and determination of chemically distinct solute parameters for use in linear solvation energy relationships[J]. Fluid Phase Equilibria, 2001, 183-184: 143-157. [15] 姚义鸣, 赵洋洋, 孙红文. 天津市大气中全氟化合物挥发性前体物的分布和季节变化[J]. 环境化学, 2016, 35(7):1329-1336. YAO Y M, ZHAO Y Y, SUN H W. The atmospheric distribution and seasonal variation of volatile perfluoroalkyl substance precursors in Tianjin[J]. Environmental Chemistry, 2016, 35(7): 1329-1336(in Chinese).
[16] KROGESTH I S, WHELAN M J, ChRISTENSEN G N, et al. Understanding of cyclic volatile methyl siloxane fate in a high latitude lake is constrained by uncertainty in organic carbon-water partitioning[J]. Environmental Science & Technology, 2017, 51(1): 401-409. [17] 吴婧娴, 栾晓新, 李清波, 等. 市政污水中环形挥发性甲基硅氧烷浓度水平与去除效率[J]. 环境化学, 2016, 35(9):1833-1841. WU J X, LUAN X X, LI Q B, et al. Occurrence and removal efficiency of cyclic volatile methylsiloxanes in municipal wastewater[J]. Environmental Chemistry, 2016, 35(9): 1833-1841(in Chinese).
[18] BORGÅ K, FJELD E, KIERKEGAARD A, et al. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout[J]. Environmental Science & Technology, 2013, 47(24): 14394-14402. [19] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211: 124-131. [20] PANAGOPOULOS D, JAHNKE A, KIERKEGAARD A, et al. Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Environmental Science & Technology, 2015, 49(20): 12161-12168. [21] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304. [22] KIM M, LI L Y, GRACE J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196: 462-472. [23] ENDO S, GRATHWOHL P, HADERLEIN S B, et al. LFERs for soil organic carbon-water distribution coefficients (KOC) at environmentally relevant sorbate concentrations[J]. Environmental Science & Technology, 2009, 43(9): 3094-3100. [24] SABLJIC A, GUSTEN H, VERHAAR H, et al. QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations[J]. Chemosphere, 1995, 31(11-12): 4489-4514. [25] SCHVVRMANN G, EBRET R U, KVHNE R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure[J]. Environmental Science & Technology, 2006, 40(22): 7005-7011. [26] KIPKA U, DI TORO D M. A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments[J]. Environmental Toxicology and Chemistry, 2011, 30(9): 2013-2022. [27] GOSS K U, SCHWARZENBACH R P. Linear Free Energy Relationships used to evaluate equilibrium partitioning of organic compounds[J]. Environmental Science & Technology, 2001, 35(1): 1-9. [28] ABRAHAM M H, POOLE C F, POOLE S K. Classification of stationary phases and other materials by gas chromatography[J]. Journal of Chromatography A, 1999, 842(1-2): 79-114. [29] ABRAHAM M H, BENJELLOUN-DAKHAMA N, GOLA J M R, et al. Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties[J]. New Journal of Chemistry, 2000, 24(10): 825-829. [30] 陈望香, 朱润良, 葛飞, 等. 应用多元线性溶剂化能关系研究有机膨润土的吸附特征[J]. 环境科学学报, 2011, 31(5): 1019-1025. CHEN W X, ZHU R L, GE F, et al. Investigation on the sorptive characteristics of organobentonites using a linear solvation energy relationship[J]. Acta Scientiae Circumstantiae, 2011, 31(5): 1019-1025(in Chinese).
[31] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR 模型内部和外部验证方法综述[J]. 环境化学, 2013, 32(7): 1205-1211. QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model: Review[J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese).
[32] GRAMATICA P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701. [33] XIA X R, MONTEIRO-RIVIERE N A, RIVIERE J E. An index for characterization of nanomaterials in biological systems[J]. Nature Nanotechnology, 2010, 5(9): 671-675. [34] VITHA M, CARR P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. Journal of Chromatography A, 2006, 1126(1-2):143-194. -

计量
- 文章访问数: 1878
- HTML全文浏览数: 1847
- PDF下载数: 309
- 施引文献: 0