[1] |
MANARY M J. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
|
[2] |
LEY R E, PETERSON DA, GORDON J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4):837-848.
|
[3] |
GILL S R, POP M, DEBOY R T, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359.
|
[4] |
YOUNG V B, BRITTON R A, SCHMIDT T M. The human microbiome and infectious diseases:Beyond koch[J]. Interdisciplinary Perspectives on Infectious Diseases, 2009, 2008:296873.
|
[5] |
SANDLER RH, FINEGOLD SM, BOLTE ER, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism[J]. Journal of Child Neurology, 2000, 15(7):429-435.
|
[6] |
MULAK A, BONAZ B. Brain-gut-microbiota axis in Parkinson's disease[J]. World Journal of Gastroenterology, 2015, 21(37):10609-10620.
|
[7] |
OLANOW CW, WAKEMAN DR, KORDOWER JH. Peripheral alpha-synuclein and Parkinson's disease[J]. Movement Disorders Official Journal of the Movement Disorder Society, 2014, 29(8):963-966.
|
[8] |
MONACHESE M, BURTON JP, REID G. Bioremediation and tolerance of humans to heavy metals through microbial processes:a potential role for probiotics?[J]. Applied & Environmental Microbiology, 2012, 78(18):6397-6404.
|
[9] |
ZLATKO Z, BILBAN M, FABJAN T, et al. Lead exposure and oxidative stress in coal miners[J]. Biomedical and Environmental Sciences, 2017, 30(11):841-845.
|
[10] |
CHEN, RONG, WANG, et al. The pollution character analysis and risk assessment for metals in dust and PM10 around road from China[J]. Biomedical and Environmental Sciences, 2015, 28(1):44-56.
|
[11] |
REANEY SH, BENCH G, SMITH DR. Brain Accumulation and Toxicity of Mn(Ⅱ) and Mn(Ⅲ) Exposures[J]. Toxicological Sciences An Official Journal of the Society of Toxicology, 2006, 93(1):114-124.
|
[12] |
ATTAR AM, KHARKHANEH A, ETEMADIFAR M, et al. Serum mercury level and multiple sclerosis[J]. Biological Trace Element Research, 2012, 146(2):150-153.
|
[13] |
OLSON ND, LUND SP, ZOOK JM, et al. International interlaboratory study comparing single organism 16S rRNA gene sequencing data:beyond consensus sequence comparisons[J]. Biomolecular Detection & Quantification, 2015, 3:17-24.
|
[14] |
WANG Q, GARRITY GM, TIEDJE JM, et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied & Environmental Microbiology, 2007, 73(16):5261-5267.
|
[15] |
PATEL J B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory[J]. Mol Diagn, 2001, 6(4):313-321.
|
[16] |
HANDELSMAN J, RONDON MR, BRADY SF, et al. Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products[J]. Chem Biol, 1998, 5(10):R245-249.
|
[17] |
夏照华, 何建行. 宏基因组测序在传染性疾病中的研究进展[J]. 中国微生态学杂志, 2017, 29(2):245-248.
XIA Z H,HE J X. Research progress of metagenomic sequencing in infectious diseases[J]. Chinese Journal of Microecology, 2017, 29(2):245-248(in Chinese).
|
[18] |
BIKEL S, VALDEZ-LARA A, CORNEJO-GRANADOS F, et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions:Towards a systems-level understanding of human microbiome[J]. Computational & Structural Biotechnology Journal, 2015, 13:390-401.
|
[19] |
DAVIDSON R M, EPPERSON L E. Microbiome sequencing methods for studying human diseases[J]. Methods Mol Biol, 2018, 1706:77-90.
|
[20] |
CHI L, BIAN X, GAO B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences An Official Journal of the Society of Toxicology, 2017, 160(2):193-204.
|
[21] |
LIANG C, BIAN X, BEI G, et al. Sex-specific effects of arsenic exposure on the trajectory and function of the gut microbiome[J]. Chemical Research in Toxicology, 2016, 29(6):949-951.
|
[22] |
MILATOVIC D, RC ZMS. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity[J]. Toxicology & Applied Pharmacology, 2009, 240(2):219-225.
|
[23] |
GUNTER TE, GAVIN CE, ASCHNER M, et al. Speciation of manganese in cells and mitochondria:A search for the proximal cause of manganese neurotoxicity[J]. Neurotoxicology, 2006, 27(5):765-776.
|
[24] |
KOMATSU F, KAGAWA Y, KAWABATA T, et al. A high accumulation of hair minerals in mongolian people:2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, Parkinsonism and arthritis[J]. Current Aging Science, 2011, 4(1):42-56.
|
[25] |
LIANG C, BEI G, BIAN X, et al. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice[J]. Toxicology & Applied Pharmacology, 2017, 331:142-153.
|
[26] |
LU K, ABO RP, SCHLIEPER KA, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice:An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3):284-291.
|
[27] |
JIN Y, WU S, ZENG Z, et al. Effects of environmental pollutants on gut microbiota[J]. Environmental Pollution, 2017, 222:1-9.
|
[28] |
KOENIG JE, KLAENHAMMER TR. Succession of microbial consortia in the developing infant gut microbiome[J]. Proceedings of the National Academy of Science, 2011, 108(Suppl 1):4578-4585.
|
[29] |
LEBLANC J G, MILANI C, DE GIORI G S, et al. Bacteria as vitamin suppliers to their host:A gut microbiota perspective[J]. Curr Opin Biotechnol, 2013, 24(2):160-168.
|
[30] |
IANNIELLO R G, RICCIARDI A, PARENTE E, et al. Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of lactobacillus casei strains[J]. LWT-Food Science and Technology, 2015, 60(2):817-824.
|
[31] |
FLORA SJS, MITTAL M, MISHRA D. Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain[J]. Journal of the Neurological Sciences, 2009, 285(1-2):198-205.
|
[32] |
CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6):1470-1481.
|
[33] |
HOOPER L V, DAN R L, MACPHERSON A J. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086):1268-1273.
|
[34] |
MICHEL O, GINANNI R, DUCHATEAU J, et al. Domestic endotoxin exposure and clinical severity of asthma[J]. Clinical & Experimental Allergy, 1991, 21(4):441-448.
|
[35] |
ZHU J P, WU K, LI J Y, et al. Cryptoporus volvatus polysaccharides attenuate LPS-induced expression of pro-inflammatory factors via the TLR2 signaling pathway in human alveolar epithelial cells[J]. Pharmaceutical Biology, 2016, 54(2):347-353.
|
[36] |
MEDZHITOV R. Medzhitov R. Recognition of microorganisms and activation of the immune response.[J]. Nature, 2007, 449(7164):819-826.
|
[37] |
CRYAN J F, DINAN T G. Mind-altering microorganisms:The impact of the gut microbiota on brain and behaviour[J]. Nature Reviews Neuroscience, 2012, 13(10):701-712.
|
[38] |
ROCHFORT K D, CUMMINS P M. The blood-brain barrier endothelium:a target for pro-inflammatory cytokines[J]. Biochemical Society Transactions, 2015, 43(4):702-706.
|
[39] |
DANTZER R, KONSMAN J P, BLUTHé R M, et al. Neural and humoral pathways of communication from the immune system to the brain:parallel or convergent?[J]. Autonomic Neuroscience Basic & Clinical, 2000, 85(1):60-65.
|
[40] |
QUAN N, WHITESIDE M, HERKENHAM M. Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide[J]. Neuroscience, 1998, 83(1):281-293.
|
[41] |
KONSMAN JP, VIGUES S, MACKERLOVA L, et al. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity:relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli[J]. Journal of Comparative Neurology, 2004, 472(1):113-129.
|
[42] |
BUHNIK-ROSENBLAU K, MOSHE-BELIZOWSKI S, DANIN-POLEG Y, et al. Genetic modification of iron metabolism in mice affects the gut microbiota[J]. Biometals, 2012, 25(5):883-892.
|
[43] |
ZHENG W, ZHAO Q, SLAVKOVICH V, et al. Alteration of iron homeostasis following chronic exposure to manganese in rats[J]. Brain Research, 1999, 833(1):125-132.
|
[44] |
LE W. Role of iron in UPS impairment model of Parkinson's disease[J]. Parkinsonism & Related Disorders, 2014, 20(Suppl 1):S158.
|
[45] |
CHUA ACG, MORGAN E H. Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat[J]. Biological Trace Element Research, 1996, 55(1-2):39-54.
|
[46] |
ROTH J A, GARRICK M D. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese[J]. Biochemical Pharmacology, 2003, 66(1):1-13.
|
[47] |
CROSSGROVE J, ZHENG W. Manganese toxicity upon overexposure[J]. Nmr in Biomedicine, 2004, 17(8):544-553.
|
[48] |
JONES BV, BEGLEY M, HILL C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13580-13585.
|
[49] |
GRIFFITHS W J, SJöVALL J. Bile acids:analysis in biological fluids and tissues[J]. Journal of Lipid Research, 2010, 51(1):23-41.
|
[50] |
GAO B, CHI L, MAHBUB R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4):996-1005.
|
[51] |
DIETSCH J M, TURLEY S D. Cholesterol metabolism in the central nervous system during early development and in the mature animal[J]. Journal of Lipid Research, 2004, 45(8):1375-1397.
|
[52] |
YADAV R S, TIWARI N K. Lipid Integration in neurodegeneration:an overview of Alzheimer's disease[J]. Molecular Neurobiology, 2014, 50(1):168-176.
|
[53] |
ANTHARAM V C, MCEWEN D C, GARRETT T J, et al. An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in clostridium difficile Infection[J]. Plos One, 2016, 11(2):e0148824.
|
[54] |
HAENEN D, ZHANG J, SOUZA DA SILVA C, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine[J]. Journal of Nutrition, 2013, 143(3):274-283.
|
[55] |
WONG J M, DE S R, KENDALL C W, et al. Colonic health:Fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology, 2006, 40(3):235-243.
|
[56] |
TAN J, MCKENZIE C, POTAMITIS M, et al. The role of short-chain fatty acids in health and disease[J]. Advances in Immunology, 2014, 121(January):91-119.
|
[57] |
BRANISTE V, ALASMAKH M, KOWAL C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Science Translational Medicine, 2014, 6(263):263ra158.
|
[58] |
DE THEIJE C G, WOPEREIS H, RAMADAN M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders[J]. Brain Behavior & Immunity, 2014, 37(3):197-206.
|
[59] |
SAMPSON T R, DEBELIUS J W, THRON T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease[J]. Cell, 2016, 167(6):1469-1480.
|
[60] |
ZHANG S, JIN Y, ZENG Z, et al. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome[J]. Chemical Research in Toxicology, 2015, 28(10):2000-2009.
|
[61] |
LIU Y, LI Y, LIU K, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. Plos One, 2014, 9(2):e85323.
|
[62] |
FROST G, SLEETH M L, SAHURIARISOYLU M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nature Communications, 2014, 5:3611.
|
[63] |
WU J, WEN X W, FAULK C, et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice[J]. Toxicological Sciences, 2016, 151(2):324-333.
|
[64] |
BARANOWSKABOSIACKA I, FALKOWSKA A, GUTOWSKA I, et al. Glycogen metabolism in brain and neurons-astrocytes metabolic cooperation can be altered by pre-and neonatal lead (Pb) exposure[J]. Toxicology, 2017, 390:146-158.
|
[65] |
FRYER K L, BROWN A M. Pluralistic roles for glycogen in the central and peripheral nervous systems[J]. Metabolic Brain Disease, 2015, 30(1):299-306.
|
[66] |
LYTE M. Microbial endocrinology in the microbiome-gut-brain axis:how bacterial production and utilization of neurochemicals influence behavior[J]. PLOS Pathogens,9,11(2013-11-14), 2013, 9(11):e1003726.
|
[67] |
MORTON G J, SCHWARTZ M W. Leptin and the CNS control of glucose metabolism[J]. Physiological Reviews, 2011, 91(2):389-411.
|
[68] |
BIAGIOLI M, PIFFERI S, RAGGHIANTI M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis[J]. Cell Calcium, 2008, 43(2):184-195.
|
[69] |
SHI W, GUAN X, HAN Y, et al. Waterborne Cd2+ weakens the immune responses of blood clam through impacting Ca2+ signaling and Ca2+ related apoptosis pathways[J]. Fish & Shellfish Immunology, 2018, 77:208-213.
|
[70] |
许运智, 黄锁义. 钙和人体健康[J]. 化学教学, 2003, (12):28-29. XU Y Z,HUANG S Y. Calcium and human health[J]. Chemistry Teaching, 2003
, (12):28-29(in Chinese).
|
[71] |
NISHIMURA Y, YAMAGUCHI J Y, KANADA A, et al. Increase in intracellular Cd2+ concentration of rat cerebellar granule neurons incubated with cadmium chloride:Cadmium cytotoxicity under external Ca2+ -free condition[J]. Toxicology in Vitro, 2006, 20(2):211-216.
|
[72] |
YUAN Y, JIANG CY, XU H, et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway[J]. Plos One, 2013, 8(5):e64330.
|
[73] |
MIN K S, SANO E, UEDA H, et al. Dietary deficiency of calcium and/or iron, an age-related risk factor for renal accumulation of cadmium in mice[J]. Biological & Pharmaceutical Bulletin, 2015, 38(10):1557-1563.
|
[74] |
YANG X, WEN G, TUO B, et al. Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion[J]. Oncotarget, 2018, 9(3):3727-3740.
|
[75] |
FURNESS J B, CALLAGHAN B P, RIVERA L R, et al. The enteric nervous system and gastrointestinal innervation:integrated local and central control[M]. New York:Springer New York, 2014.
|
[76] |
SHARON G, GARG N, DEBELIUS J, et al. Specialized metabolites from the microbiome in health and disease[J]. Cell Metabolism, 2014, 20(5):719-730.
|
[77] |
BARRETT E, ROSS R P, O'TOOLE P W, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. Journal of Applied Microbiology, 2012, 113(2):411-417.
|
[78] |
BRAVO J A, FORSYTHE P, CHEW M V, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38):16050-16055.
|
[79] |
SEQUERRA E B, GARDINO P, HEDIN-PEREIRA C, et al. Putrescine as an important source of GABA in the postnatal rat subventricular zone[J]. Neuroscience, 2007, 146(2):489-493.
|
[80] |
POULTER M O, SINGHAL R, BROWN L A, et al. GABA(A) receptor subunit messenger RNA expression in the enteric nervous system of the rat:implications for functional diversity of enteric GABA(A) receptors[J]. Neuroscience, 1999, 93(3):1159-1165.
|
[81] |
FERNSTROM J D. Tryptophan availability and serotonin synthesis in brain[M]. Berlin:Springer Berlin Heidelberg, 1988.
|
[82] |
GERSHON M D, TACK J. The serotonin signaling system:from basic understanding to drug development for functional GI disorders[J]. Gastroenterology, 2007, 132(1):397-414.
|
[83] |
FOSTER J A, RINAMAN L, CRYAN J F. Stress & the gut-brain axis:Regulation by the microbiome[J]. Neurobiol Stress, 2017, 7:124-136.
|
[84] |
SANG H R, POTHOULAKIS C, MAYER E A. Principles and clinical implications of the brain-gut-enteric microbiota axis[J]. Nature Reviews Gastroenterology & Hepatology, 2009, 6(5):306-314.
|
[85] |
NICHOLSON J K, HOLMES E, KINROSS J, et al. Host-gut microbiota metabolic interactions.[J]. Science, 2012, 336(6086):1262-1267.
|
[86] |
CLAVEL T, GOMES-NETO J C, LAGKOUVARDOS I, et al. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes[J]. Immunological Reviews, 2017, 279(1):8-22.
|
[87] |
SINHA V, MISHRA R, KUMAR A, et al. Amplification of arsH gene in lactobacillus acidophilus resistant to arsenite[J]. Biotechnology, 2011, 10(1):101-107.
|
[88] |
ROBINSON J B, TUOVINEN O H. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds:physiological, biochemical, and genetic analyses[J]. Microbiol Rev, 1984, 48(2):95-124.
|
[89] |
OSBORN A M, BRUCE K D, STRIKE P, et al. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon[J]. Fems Microbiology Reviews, 1997, 19(4):239-262.
|
[90] |
KRANENBURG R V, GOLIC N, BONGERS R, et al. Functional analysis of three plasmids from lactobacillus plantarum[J]. Applied & Environmental Microbiology, 2005, 71(3):1223-1230.
|
[91] |
TABATADZE T, ZHORZHOLIANI L, KHERKHEULIDZE M, et al. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder[J]. Georgian Medical News, 2015(248):77-82.
|
[92] |
ALBIZZATI A, MORÃ L, DI CANDIA D, et al. Normal concentrations of heavy metals in autistic spectrum disorders[J]. Minerva Pediatrica, 2012, 64(1):27-31.
|
[93] |
ALESSANDRA M, MARTINA L, FRANCESCO F, et al. Environment, dysbiosis, immunity and sex-specific susceptibility:A translational hypothesis for regressive autism pathogenesis[J]. Nutritional Neuroscience, 2015, 18(4):145-161.
|
[94] |
FINEGOLD S M. Therapy and epidemiology of autism-Clostridial spores as key elements[J]. Medical Hypotheses, 2008, 70(3):508-511.
|
[95] |
TILLISCH K, LABUS J, KILPATRICK L, et al. Consumption of fermented milk product with probiotic modulates brain activity[J]. Gastroenterology, 2013, 144(7):1394-1401.
|