[1]
|
郝晓地, 王崇臣, 金文标. 磷危机概观与磷回收技术[M]. 北京: 高等教育出版社, 2011.
Google Scholar
Pub Med
|
[2]
|
U. S. GEOLOGICAL SURVEY. Mineral commodity summaries 2021[EB/OL]. [2021-09-04]. https://pubs.er.usgs.gov/publication/mcs2021, 2021.
Google Scholar
Pub Med
|
[3]
|
HAO X D, WANG C C, VAN LOOSDRECHT M C M, et al. Looking beyond struvite for P-recovery[J]. Environmental Science & Technology, 2013, 47(10): 4965-4966.
Google Scholar
Pub Med
|
[4]
|
郝晓地, 于晶伦, 付昆明, 等. 农村污水处理莫轻视“肥水”资源[J]. 中国给水排水, 2019, 35(20): 5-12. doi: 10.19853/j.zgjsps.1000-4602.2019.20.002
CrossRef Google Scholar
Pub Med
|
[5]
|
DESMIDT E, GHYSELBRECHT K, ZHANG Y, et al. Global phosphorus scarcity and full scale P-recovery technique: a review[J]. Critical Reviews in Environmental Science & Technology, 2015, 45(4): 336-384.
Google Scholar
Pub Med
|
[6]
|
EUROPEAN COMMISSION. Amending to Regulation (EU) 2019/1009 for the purpose of adding precipitated phosphate salts and derivates as a component material category in EU fertilizing product[EB/OL]. [2021-09-04].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM%3AC%282021%294743, 2021.
Google Scholar
Pub Med
|
[7]
|
柴春燕, 冯玉杰. 污水能源资源回收利用全球工程应用进展[J]. 中国给水排水, 2016, 32(24): 14-19. doi: 10.19853/j.zgjsps.1000-4602.2016.24.003
CrossRef Google Scholar
Pub Med
|
[8]
|
JUPP A R, BEIJER S, NARAIN G C, et al. Phosphorus recovery and recycling-closing the loop[J]. Chemical Society reviews, 2021, 50(1): 87-101. doi: 10.1039/D0CS01150A
CrossRef Google Scholar
Pub Med
|
[9]
|
郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物——蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234. doi: 10.13671/j.hjkxxb.2018.0236
CrossRef Google Scholar
Pub Med
|
[10]
|
NÄTTORP A, KABBE C, MATSUBAE K, et al. Development of phosphorus recycling in Europe and Japan[J]. OHTAKE H, TSUNEDA S. Phosphorus Recovery and Recycling. Singapore:Springer Singapore, 2019: 3-27.
Google Scholar
Pub Med
|
[11]
|
EUROPEAN COMMISSION. The Nitrates Directive[EB/OL]. [2021-09-04]. https://ec.europa.eu/environment/water/water-nitrates/index_en.html, 2018.
Google Scholar
Pub Med
|
[12]
|
SYSTEMIC. Flow diagrams of our demonstration plants: Groot Zevert Vergisting plant[EB/OL]. [2021-09-04]. https://systemicproject.eu/wp-content/uploads/Systemic-GZV-Poster_EN_LR.pdf, 2020.
Google Scholar
Pub Med
|
[13]
|
SYSTEMIC. Groot Zevert Vergisting, Beltrum (Netherlands)[EB/OL]. [2021-09-04]. https://systemicproject.eu/wp-content/uploads/Factsheet-1-Groot-Zevert_year3_final.pdf, 2020.
Google Scholar
Pub Med
|
[14]
|
GYSIN A, LYCKE D, WIRTEL S. The Pearl® and WASSTRIP® processes (Canada)[J]. SCHAUM C. Phosphorus:Polluter and Resource of the Future Removal and Recovery from Wastewater. London:IWA Publishing, 2018: 359-365.
Google Scholar
Pub Med
|
[15]
|
VAN LOOSDRECHT M C M, BRANDSE F A, VRIES A. Upgrading of wastewater treatment processes for integrated nutrient removal the BCSF(r) process[J]. Water Science & Technology, 1998, 37(9): 209-217.
Google Scholar
Pub Med
|
[16]
|
郝晓地, 汪慧贞, VAN LOOSDRECHT M C M. 可持续除磷脱氮BCFS工艺[J]. 给水排水, 2002, 28(9): 7-10. doi: 10.3969/j.issn.1002-8471.2002.09.003
CrossRef Google Scholar
Pub Med
|
[17]
|
OSTARA. Ostara inaugurate 900 t/y struvite-recovery in Amersfoort[EB/OL]. [2021-09-04]. https://phosphorusplatform.eu/scope-in-print/news/1219-ostara-struvite-recovery-amersfoort, 2016.
Google Scholar
Pub Med
|
[18]
|
OSTARA. Ostara and Murphy partner to deliver part of Ringsend wastewater treatment plant up - grade project for Irish water[EB/OL]. [2021-09-04]. https://ostara.com/project/ostara-and-murphy-partner-to-deliver-part-of-ringsend-wastewater-treatment-plant-upgrade-project-for-irish-water/, 2021.
Google Scholar
Pub Med
|
[19]
|
BUTTMANN M. Industrial scale plant for sewage sludge treatment by hydro-thermal carbonization in Jining/China and phosphate recovery by TerraNova® Ultra HTC process[C]. European Biosolids and Organic Resources Conference, 2017.
Google Scholar
Pub Med
|
[20]
|
TERRANOVA. Growth tests with TerraNova® Ultra liquid fertilizer showed better results than com-mercial liquid fertilizer[EB/OL]. [2021-09-04]. http://s232856347.online.de/pdf/Ergebnisse-Wachstumstest-mit-Tomate-und-Weizen.pdf, 2015.
Google Scholar
Pub Med
|
[21]
|
TERRANOVA. Terranova-energy projects[EB/OL]. [2021-09-04]. https://terranova-energy.com/projekte/, 2010.
Google Scholar
Pub Med
|
[22]
|
仲璐, BUTTMANN M, 王君琦. 污泥水热碳化处理技术及其工程化应用——以济宁中山污泥处理工程项目为例[J]. 环境卫生工程, 2020, 140(2): 70-72. doi: 10.19841/j.cnki.hjwsgc.2020.02.014
CrossRef Google Scholar
Pub Med
|
[23]
|
EUROPEAN SUSTAINABLE PHOSPHROUS PLATFORM. Dutch phosphate value chain agreement[EB/OL]. [2021-09-04]. https://www.phosphorusplatform.eu/images/download/Dutch_phosphate_value_chain_agreement_-_Oct_4th_2011.pdf, 2011.
Google Scholar
Pub Med
|
[24]
|
LANGEVELD K. Phosphorus recovery into fertilizers and industrial products by ICL in Europe[J]. OHTAKE H, TSUNEDA S. Phosphorus Recovery and Recycling. Singapore:Springer Singapore, 2019: 235-255.
Google Scholar
Pub Med
|
[25]
|
ICL. ICL the Netherlands Amfert opened its innovative phosphate recycling unit[EB/OL]. [2021-09-04]. https://icl-group-sustainability.com/reports/producing-fertilizers-with-recycled-phosphate/, 2019.
Google Scholar
Pub Med
|
[26]
|
LANGEVELD K. The Recophos/Inducarb process (the Netherlands)[J]. SCHAUM C. Phosphorus:Polluter and Resource of the Future Removal and Recovery from Wastewater. London:IWA Publishing, 2018: 443-446.
Google Scholar
Pub Med
|
[27]
|
OHTAKE H, OKANO K. Development and implementation of technologies for recycling phosphorus in secondary resources in Japan[J]. Global Environmental Research, 2015, 19(1): 49-65.
Google Scholar
Pub Med
|
[28]
|
NAKAGAWA H, OHTA J. Phosphorus recovery from sewage sludge ash: a case study in Gifu, Japan[J]. Phosphorus Recovery and Recycling. OHTAKE H, TSUNEDA S. Singapore:Springer Singapore, 2019: 149-155.
Google Scholar
Pub Med
|
[29]
|
EGLE L, RECHBERGER H, ZESSNER M. Overview and description of technologies for recovering phosphorus from municipal wastewater[J]. Resources, Conservation & Recycling, 2015, 105: 325-346.
Google Scholar
Pub Med
|
[30]
|
EGLE L, RECHBERGER H, KRAMPE J, et al. Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P-recovery technologies[J]. Science of the Total Environment, 2016, 571: 522-542. doi: 10.1016/j.scitotenv.2016.07.019
CrossRef Google Scholar
Pub Med
|
[31]
|
CIELIK B, KONIECZKA P. A review of phosphorus re-recovery methods at various steps of wastewater treatment and sewage sludge management: the concept of "no solid waste generation" and analytical methods[J]. Journal of Cleaner Production, 2017, 142: 1728-1740. doi: 10.1016/j.jclepro.2016.11.116
CrossRef Google Scholar
Pub Med
|
[32]
|
HAO X D, CHEN Q, VAN LOOSDRECHT M C M, et al. Sustainable disposal of excess sludge: incineration without anaerobic digestion[J]. Water Research, 2020, 170: 115298. doi: 10.1016/j.watres.2019.115298
CrossRef Google Scholar
Pub Med
|
[33]
|
WITHERS P J, FORBER K G, LYON C, et al. Towards resolving the phosphorus chaos created by food systems[J]. AMBIO:A Journal of the Human Environment, 2019, 49(5): 1076-1089.
Google Scholar
Pub Med
|
[34]
|
SAMIR K, WOLFGANG L. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100[J]. Global environmental change:human and policy dimensions, 2017, 42: 181-192. doi: 10.1016/j.gloenvcha.2014.06.004
CrossRef Google Scholar
Pub Med
|
[35]
|
CORDELL D, WHITE S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security[J]. Sustainability, 2011, 3(10): 2027. doi: 10.3390/su3102027
CrossRef Google Scholar
Pub Med
|
[36]
|
EUROPEAN COMMISSION. Published initiatives-fertilizing products-technical update[EB/OL]. [2021-09-04]. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12135-Fertilising-products-technical-update_en, 2021.
Google Scholar
Pub Med
|
[37]
|
EUROPEAN SUSTAINABLE PHOSPHROUS PLATFORM. Summary of the 3rd European Sustain-able Phosphorus Conference (ESPC3) [EB/OL]. [2021-09-07]. https://phosphorusplatform.eu/images/scope/scopenewsletter127.pdf, 2018.
Google Scholar
Pub Med
|
[38]
|
郝晓地, 宋鑫, VANLOOSDRECHT M C M, 等. 政策驱动欧洲磷回收与再利用[J]. 中国给水排水, 2017, 33(8): 35-42. doi: 10.19853/j.zgjsps.1000-4602.2017.08.007
CrossRef Google Scholar
Pub Med
|
[39]
|
NEDELCIU C E, KRISTINSDOTTIR K, STJERNQUIST I, et al. Global phosphorus supply chain dynamics: assessing regional impact to 2050[J]. Global Food Security, 2020, 26: 100426. doi: 10.1016/j.gfs.2020.100426
CrossRef Google Scholar
Pub Med
|
[40]
|
ANDERSEN M S. The nitrogen mineral fertilizer tax in Sweden [EB/OL]. [2021-09-05]. https://ieep.eu/uploads/articles/attachments/cd57d2c2-6c74-4244-8201-10c8fff4b7f6/SE%20Fertilizer%20Tax%20final.pdf?v=63680923242, 2017.
Google Scholar
Pub Med
|
[41]
|
EASYMINING. Our phosphorus recovery solution receives multi-million grant[EB/OL]. [2021-09-05]. https://www.easymining.se/newsroom/articles-news/51-msek-grant/, 2021.
Google Scholar
Pub Med
|
[42]
|
ANDERSEN M S. The animal feed mineral phosphorus tax in Denmark[EB/OL]. [2021-09-05]. https://ieep.eu/uploads/articles/attachments/ccbf12fc-48fa-4ddf-8d6d-4413357ae01e/DK%20Phosphorus%20Tax%20final.pdf?v=63680923242, 2017.
Google Scholar
Pub Med
|
[43]
|
GAARD J J. Danish national taxes on phosphorous discharges and on sludge ash landfill[EB/OL]. [2021-09-05]. https://phosphorusplatform.eu/images/download/P-removal-workshop-2019/Gaard_Denmark_Ministry_9_11_19_Liege.pdf, 2019.
Google Scholar
Pub Med
|