-
随着我国城市化进程和产业结构调整步伐的加快,大批工业企业相继搬迁或关停,产生大量工业遗留污染场地,对生态环境和周边居民的健康造成严重威胁[1]。在我国污染场地修复产业快速发展的20年间,初期多采用异位修复技术,如固化/稳定化、水泥窑协同处置等,但异位修复时挖掘和运输等过程将导致二次污染风险增大,并且综合考虑生态和社会效益,用于异位修复的资源消耗和能效比并不低[2]。随着污染场地治理修复行业的发展,国家《土壤污染防治行动计划》[3]和《中华人民共和国土壤污染防治法》[4]相继提出污染土壤原则上进行原位修复的要求,污染场地修复技术逐渐由异位修复技术向原位修复技术发展,如原位热处理、原位化学氧化还原、原位生物修复技术等[5]。其中,原位热处理 (In-situ thermal treatment, ISTT) 技术作为一种高效修复技术,具有地下扰动小、适用污染物类型多、作业深度深、修复周期短、污染去除率高等优势,在污染程度重、时间要求紧的场地修复工程中得到了广泛的应用,已成为修复挥发/半挥发性有机污染场地最有效的方法之一[6-9]。
面对全球气候变化形势日趋严峻的现状,多个国家及地区相继提出碳中和目标[10],绿色可持续修复已逐渐成为国际污染场地修复的发展方向[11]。我国于2020年提出“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现中和”的目标[12]。在“双碳”战略背景下,亟需加强国内污染场地的绿色可持续修复研究,提升修复技术的发展水平。值得关注的是,ISTT技术由于需要持续的能源输入以达到较高处理温度,被认为是能源密集型技术[13],影响其在“双碳”战略背景下的推广应用。尽管传统ISTT存在能耗和碳排放较高的弊端,但该技术具有修复周期短、效率高、二次污染影响小的特征,合理优化后有望转变为可持续修复技术[14]。为此,本文调研国内外ISTT技术的研究和工程实例,分析ISTT技术应用过程的碳排放和能耗情况及其关键贡献环节,拟提出在现有技术基础上推动ISTT技术低碳发展的主要优化方向,并梳理了借力可再生能源和技术优化等措施的研究进展,以期为业界对“双碳”目标下该技术的研发和应用提供参考。
“双碳”目标下污染场地原位热处理技术发展趋势
Discussion on development trend of in-situ thermal treatment technology for contaminated sites under dual-carbon target
-
摘要: 原位热处理技术可以在低地下扰动的前提下实现污染场地快速高效的修复,已成为高浓度挥发/半挥发性有机物污染场地修复的热门技术之一。然而,传统原位热处理技术存在能耗和碳排放较高的弊端,限制了其大范围推广应用。在“碳达峰、碳中和”的战略目标下,亟需开展原位热处理技术的优化研究以降低其能效比。通过国内外实验研究与工程案例的整理分析,识别原位热处理活动中的碳排放和能耗的关键工艺环节,进而提出该技术低碳化发展的主要方向;同时梳理原位热处理工艺中应用再生能源和技术优化的研究进展,展望“双碳”目标下该技术的重点研究方向。目前已获得的研究结果表明,通过应用可再生能源和技术优化有望实现原位热修复工艺的大幅减排。Abstract: In-situ thermal treatment technology can achieve rapid and efficient remediation of contaminated sites with low underground disturbance, and has become one of the most popular remediation technologies for contaminated sites with high concentration of volatile/semi-volatile organic compounds. However, this technology has the drawbacks of high energy consumption and carbon emissions, which limits its wide-scale popularization and application. Under the strategic target of “carbon peak, carbon neutrality”, it is urgent to carry out process optimization of this technology. Through the analysis of domestic and foreign experimental studies and engineering cases, the key processes of carbon emission and energy consumption in in-situ thermal treatment activities were identified, and the main direction of low-carbon development of the technology was proposed. Then, the application of renewable energy in in-situ thermal treatment and the optimization of in-situ thermal treatment technology at the technical aspects was reviewed. Finally, the future research direction of this technology under the target of “dual carbon” was prospected. The results obtained so far showed that the carbon emissions of in-situ thermal treatment processes were expected to be significantly reduced through renewable energy applications and technological optimization.
-
Table 1. Technical characteristics of in-situ thermal treatment technologies
技术类型 最高温度/ ℃ 加热原理 优点 局限性 电阻加热 100 基于欧姆加热原理,通过电流加热污染区域 对地下非均质性不敏感 需要场地具有一定含水量 热传导加热 750~800 以热传导的形式加热污染区域 温度高,适用于难挥发污染物的处理 易受高地下水通量的影响 蒸汽强化抽提 170 以热对流的形式加热污染区域 成本较低,适用于地下水流速较快场地的处理 需要场地具有一定渗透性 射频加热 300~400 通过高频渐变电场作用来加热污染区域 对地下热导率和渗透率无要求 需要场地具有一定含水量,且成本较高 阴燃 1 200 依靠空气注入引发污染介质表面有机污染物的自持燃烧 可以自我维持,高效节能 需要场地具有一定渗透性,且对污染物浓度和热值要求较高 表 2 典型原位热处理案例的碳排放情况
Table 2. Carbon emissions from typical cases applying in-situ thermal treatment
技术类型 评估
方法主要污染物 土方量/
m3总碳排放量/
(tCO2-eq)单位碳排放量/
(kgCO2-eq·m-3)文献 电阻加热 EFA 多氯联苯 5.78×106 2.99×103 0.5 [20] LCA 含氯挥发性有机物 3.36×103 1.11×103 330.0 [21] 热传导
加热LCA 三氯乙烯 700 2.01×102 287.1 [22] — 煤焦油 — 4.12×104 — [19] 蒸汽强化
抽提EFA 石油烃 3.00×106 (3.42~6.10)×104 11.4~20.3 [23] LCA 含氯挥发性有机物 — 1.61×103 — [24] 阴燃 — 煤焦油 — 4.39×103 — [19] 注:EFA表示环境足迹分析,LCA表示全生命周期评价。 表 3 典型原位热处理案例的能耗情况
Table 3. Energy consumption from typical cases applying in-situ thermal treatment
技术类型 能源介质 主要污染物 土方量/m3 总能耗/kWh 单位能耗/ (kWh·m-3) 文献 电阻加热 电、柴油 三氯乙烯 1.26×103 6.81×105 540.5 [26] 电、柴油 三氯乙烯 1.17×104 3.47×106 296.6 [26] — 多氯联苯 5.78×106 1.70×107 2.9 [20] 热传导
加热电、柴油 氯乙烯 0.70×103 2.94×104 420.0 [22] 电、柴油 三氯乙烯 1.26×103 7.65×105 607.1 [26] 电、柴油 三氯乙烯 1.17×104 4.02×106 343.6 [26] 电 含氯挥发性有机物 9.35×104 2.32×107 248.7 [27] 蒸汽强化抽提 电、天然气 石油烃 3.00×105 (1.70~2.46)×108 566.7~820.0 [23] 电、柴油 矿物油、多环芳烃等 1.51×104 5.69×105 37.6 [28] 天然气、柴油 三氯乙烯 1.26×103 9.64×105 765.1 [26] 天然气、柴油 三氯乙烯 1.17×104 6.35×106 542.7 [26] 射频加热 电、柴油 三氯乙烯 0.20×103 1.29×105 645.0 [26] 电、柴油 三氯乙烯 1.17×104 1.03×106 88.0 [26] -
[1] HONG Y, HUANG X, THOMPSON J R, et al. China's soil pollution: urban brownfields[J]. Science, 2014, 344(6185): 691-692. [2] 梁竞, 王世杰, 张文毓, 等. 美国污染场地修复技术对我国修复行业发展的启示[J]. 环境工程, 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026 [3] 中华人民共和国国务院. 土壤污染防治行动计划[Z]. 2016-05-31. http://www.gov.cn/xinwen/2016-05/31/content_5078467.htm. [4] 全国人民代表大会常务委员会. 中华人民共和国土壤污染防治法[Z]. 2020-08-31. http://www.gov.cn/xinwen/2018-08/31/content_5318231.htm. [5] 骆永明, 滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报, 2020, 57(5): 1137-1142. [6] HERON G, CARROLL S and NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Ground Water Monitoring & Remediation, 2005, 25(4): 92-107. [7] HERON G, LACHANCE J and BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring & Remediation, 2013, 33(4): 31-43. [8] NILSSON B, TZOVOLOU D, JECZALIK M, et al. Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel[J]. Journal of Environmental Management, 2011, 92(3): 695-707. doi: 10.1016/j.jenvman.2010.10.004 [9] ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [10] 曲建升, 陈伟, 曾静静, 等. 国际碳中和战略行动与科技布局分析及对我国的启示建议[J]. 中国科学院院刊, 2022, 37(4): 444-458. doi: 10.16418/j.issn.1000-3045.20210829001 [11] 侯德义, 李广贺. 污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护, 2016, 44(20): 16-19. doi: 10.14026/j.cnki.0253-9705.2016.20.003 [12] 新华网. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. http://www.news.cn/2021-10/24/c_1127990632.htm, 2022-09-16. [13] STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: lessons learned[J]. Environmental Science & Technology, 2012, 46(12): 6438-6447. [14] DING D, SONG X, WEI C L, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. doi: 10.1016/j.envpol.2019.06.118 [15] KINGSTON J, JOHNSON P C, KUEPER B H, et al. In situ thermal treatment of chlorinated solvent source zones[J]. New York:Springer, 2014: 510-511. [16] HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas: technology advances and a review of the market from 1988–2020[J]. Groundwater Monitoring & Remediation, 2021, 41(1): 17-31. [17] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4): 426-437. doi: 10.1016/J.ENG.2016.04.005 [18] MCGEE B. Electro‐thermal dynamic stripping process for in situ remediation under an occupied apartment building[J]. Remediation Journal, 2003, 13(3): 67-79. doi: 10.1002/rem.10075 [19] GRANT G P, MAJOR D, SCHOLES G C, et al. Smoldering combustion (STAR) for the treatment of contaminated soils: examining limitations and defining success[J]. Remediation Journal, 2016, 26(3): 27-51. doi: 10.1002/rem.21468 [20] HARCLERODE M A, LAL P and MILLER M E. Estimating social impacts of a remediation project life cycle with environmental footprint evaluation tools[J]. Remediation Journal, 2013, 24(1): 5-20. doi: 10.1002/rem.21374 [21] FISHER A. Life-cycle assessment of in situ thermal remediation[J]. Remediation the Journal of Environmental Cleanup Costs, Technologies & Techniques, 2012, 22(4): 75-92. [22] LEMMING G, HAUSCHILD M Z, CHAMBON J, et al. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44(23): 9163. [23] USEPA, Environmental footprint analysis of steam enhanced extraction remedy: EPA 542-R-14-004[EB/OL]. [2022-02-25]. https://clu-in.org/greenremediation/docs/Williams-AFB-Footprint-Evaluation.pdf, 2014. [24] BALDOCK J, CHESHER L, REID D, et al. Assessment of a large scall in-situ thermal project performed at a chlorinated solvent site in the UK[EB/OL]. [2022-02-24]. http://clu-in.info/download/contaminantfocus/fracrock/Baldock-Aqua-paper.pdf,2010. [25] 江亿, 杨秀. 在能源分析中采用等效电方法[J]. 中国能源, 2010, 32(5): 7-13. doi: 10.3969/j.issn.1003-2355.2010.05.001 [26] LEMMING G, NIELSEN S G, WEBER K, et al. Optimizing the environmental performance of in situ thermal remediation technologies using life cycle assessment[J]. Ground Water Monitoring and Remediation, 2013, 33(3): 38-51. doi: 10.1111/gwmr.12014 [27] HERON G, PARKER K, FOURNIER S, et al. World's largest in situ thermal desorption project: challenges and solutions[J]. Ground Water Monitoring & Remediation, 2015, 35(3): 89-100. [28] CAPPUYNS V and KESSEN B. Evaluation of the environmental impact of brownfield remediation options: comparison of two life cycle assessment-based evaluation tools[J]. Environmental Technology, 2012, 33(21): 2447-2459. doi: 10.1080/09593330.2012.671854 [29] LI T T, LI Y Z, ZHAI Z Z, et al. Energy-saving strategies and their energy analysis and exergy analysis for in situ thermal remediation system of polluted-soil[J]. Energies, 2019, 12(20): 1-28. [30] 赵良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究[J]. 中国电力, 2016, 49: 178-184. doi: 10.11930/j.issn.1004-9649.2016.08.178.03 [31] COLLINS E, ELMORE A C and CROW M. Using conditional probability to predict solar-powered pump-and-treat performance[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17(1): 31-37. doi: 10.1061/(ASCE)HZ.2153-5515.0000144 [32] CONROY J P, ELMORE A C and CROW M. Capture zone comparison for photovoltaic microgrid-powered pump and treat remediation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2014, 18(3): 04014009. [33] GAMAGE K J and PATHIRANA W. A review of green remediation technologies and feasibility study of integrating renewable energy into contaminated site in northern cyprus[C]//Yenilenebilir Enerji Kaynakları Sempozyumu, 2013. [34] SIERRA M J, MILLáN R, FéLIX A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science& Pollution Research, 2016, 23: 4898-4907. [35] NAVARRO A, CAñADAS I and RODRíGUEZ J. Thermal treatment of mercury mine wastes using a rotary solar kiln[J]. Minerals, 2014, 4(1): 37-51. doi: 10.3390/min4010037 [36] NAKAMURA T, SENIOR C L, BURNS E G, et al. Solar‐powered soil vapor extraction for removal of dense nonaqueous phase organics from soil[J]. Environmental Letters, 2000, 35(6): 795-816. [37] 高冰, 魏明磊, 张康, 等. 污染土壤原位太阳能热脱附修复系统: CN112872007A[P]. 2021-06-01. [38] NAVARRO A, CARDELLACH E, CAADAS I, et al. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 2013, 119: 65-74. doi: 10.1016/j.minpro.2012.12.002 [39] PAUL F, BAS G, INGRID S, et al. Worldwide application of aquifer thermal energy storage–A review[J]. Renewable & Sustainable Energy Reviews, 2018, 94: 861-876. [40] RIJNAARTS H, GAANS P V, SMIT M, et al. Biodegradation of cis-1, 2-dichloroethene in simulated underground thermal energy storage systems[J]. Environmental Science & Technology, 2015, 49(22): 13519-13527. [41] MORADI A, M. SMITS K and O. SHARP J. Coupled thermally-enhanced bioremediation and renewable energy storage system: conceptual framework and modeling investigation[J]. Water, 2018, 10(10): 1288. doi: 10.3390/w10101288 [42] KASTNER O, NORDEN B, KLAPPERER S, et al. Thermal solar energy storage in Jurassic aquifers in northeastern Germany: a simulation study[J]. Renewable Energy, 2017, 104: 290-306. doi: 10.1016/j.renene.2016.12.003 [43] FERNáNDEZ-MARCHANTE C M, SOUZA F L, MILLáN M, et al. Improving sustainability of electrolytic wastewater treatment processes by green powering[J]. Science of The Total Environment, 2020, 754: 142230. [44] SOUZA F L, LANZA M, LLANOS J, et al. A wind-powered BDD electrochemical oxidation process for the removal of herbicides[J]. Journal of Environmental Management, 2015, 158: 36-39. [45] BELSKY A A, DOBUSH V S and MALAREV V I. Electro steam thermal complex powered by wind-driven generator for the treatment of the oil formation's bottomhole area[J]. Journal of Physics Conference Series, 2020, 1441: 012020. doi: 10.1088/1742-6596/1441/1/012020 [46] ROSSMAN A J, HAYDEN N J and RIZZO D M. Low-temperature soil heating using renewable energy[J]. Journal of Environmental Engineering, 2006, 132(5): 537-544. doi: 10.1061/(ASCE)0733-9372(2006)132:5(537) [47] HELLRIEGEL U, KURZ E C, LUONG V T, et al. Modular treatment of arsenic-laden brackish groundwater using solar-powered subsurface arsenic removal (SAR) and membrane capacitive deionization (MCDI) in Vietnam[J]. Journal of Water Reuse and Desalination, 2020, 10(4): 513-526. doi: 10.2166/wrd.2020.031 [48] GENG Z N, LIU B, LI G H, et al. Enhancing DNAPL Removal from low permeability zone using electrical resistance heating with pulsed direct current[J]. Journal of Hazardous Materials, 2021, 413(13): 125455. [49] SOUZA F L, LLANOS J, SAEZ C, et al. Performance of wind-powered soil electroremediation process for the removal of 2, 4-D from soil[J]. Journal of Environmental Management, 2016, 171: 128-132. [50] GANIYU S O and MARTíNEZ-HUITLE C. The use of renewable energies driving electrochemical technologies for environmental applications[J]. Current Opinion in Electrochemistry, 2020, 22: 211-220. doi: 10.1016/j.coelec.2020.07.007 [51] PENG S, WANG N and CHEN J J. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media[J]. Journal of Contaminant Hydrology, 2013, 153(7): 24-36. [52] JANFADA T S, CLASS H, KASIRI N, et al. Comparative experimental study on heat-up efficiencies during injection of superheated and saturated steam into unsaturated soil[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119235. doi: 10.1016/j.ijheatmasstransfer.2019.119235 [53] 葛松, 孟宪荣, 许伟, 等. 原位电阻热脱附土壤升温机制及影响因素[J]. 环境科学, 2020, 41(8): 3822-3828. doi: 10.13227/j.hjkx.202001092 [54] 耿竹凝, 刘波, 黄菀, 等. 电热耦合强化非均质介质中三氯乙烯DNAPL的迁移去除[J]. 环境科学研究, 2020, 33(8): 1911-1918. doi: 10.13198/j.issn.1001-6929.2020.04.23 [55] XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642 [56] ZHAI Z Z, YANG L M, LI Y Z, et al. Fuzzy coordination control strategy and thermohydraulic dynamics modeling of a natural gas heating system for in situ soil thermal remediation[J]. Entropy, 2019, 21(10): 971. doi: 10.3390/e21100971 [57] XIE Q L, MUMFORD K G and KUEPER B H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment[J]. Journal of Contaminant Hydrology, 2017, 234: 103698. [58] PARKER J, KIM U, KITANIDIS P, et al. Stochastic cost optimization of DNAPL remediation-Method description and sensitivity study[J]. Environmental Modelling & Software, 2012, 38: 74-88. [59] FALCIGLIA PP, GIUSTRA M G and VAGLIASINDI F. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400. doi: 10.1016/j.jhazmat.2010.09.046 [60] LIU J, ZHANG H, YAO Z H, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031 [61] HU G J, LIU H, RANA A, et al. Life cycle assessment of low-temperature thermal desorption-based technologies for drill cuttings treatment[J]. Journal of Hazardous Materials, 2020, 401: 123865. [62] LU G H, YUE C S, LIU S Y, et al. Na2S leaching assisting thermal desorption for thoroughly and mildly remediating severely Hg-contaminated soil[J]. Journal of chemical engineering of Japan, 2019, 52(10): 805-810. doi: 10.1252/jcej.19we037 [63] MA F J, QIAN Z, XU D P, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 2014, 117(1): 388-393. [64] MA F J, PENG C S, HOU D Y, et al. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil[J]. Journal of Hazardous Materials, 2015, 300: 546-552. doi: 10.1016/j.jhazmat.2015.07.055 [65] LIU Y Q, LI X D, ZHANG W W, et al. Pyrolysis of heavy hydrocarbons in weathered petroleum-contaminated soil enhanced with inexpensive additives at low temperatures[J]. Journal of Cleaner Production, 2021, 302: 127017. doi: 10.1016/j.jclepro.2021.127017 [66] LI J J, WANG L, PENG L B, et al. A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO[J]. Chemical Engineering Journal, 2020, 385: 123803. doi: 10.1016/j.cej.2019.123803 [67] HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2020, 198(22): 110457. [68] MORI P L, KIRKLAND E, FAIRCLOTH H, et al. Combined thermal and zero-valent iron in situ soil mixing remediation technology[J]. Remediation Journal, 2010, 20(2): 9-25. doi: 10.1002/rem.20237 [69] HERON, G, CHRISTENSEN, T H and ENFIELD, C G. Henry's law constant for trichloroethylene between 10 and 95 °C[J]. Environmental Science & Technology, 1998, 32(10): 1433-1437. [70] USMAN M, CHAUDHARY A, BIACHE C, et al. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils[J]. Environmental Science & Pollution Research, 2015, 23(2): 1-10. [71] PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097 [72] HEAD N A, GERHARD J I, INGLIS A M, et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay[J]. Water Research, 2020, 183(13): 116061. [73] NGUELEU S K, REZANEZHAD F, AL-RAOUSH R I, et al. Sorption of benzene and naphthalene on (semi)-arid coastal soil as a function of salinity and temperature[J]. Journal of Contaminant Hydrology, 2018, 219: 67-71. [74] SLEEP B E and MCCLURE P D. The effect of temperature on adsorption of organic compound to soils[J]. Canadian Geotechnical Journal, 2001, 38(1): 46-52. doi: 10.1139/t00-067 [75] KOSEGI J M, MINSKER B S and DOUGHERTY D E. Feasibility study of thermal in situ bioremediation[J]. Journal of Environmental Engineering, 2000, 126(7): 601-610. doi: 10.1061/(ASCE)0733-9372(2000)126:7(601) [76] PERFUMO A, BANAT I M, MARCHANT R, et al. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils[J]. Chemosphere, 2007, 66(1): 179-184. doi: 10.1016/j.chemosphere.2006.05.006 [77] SLENDERS H, DOLS P, VERBURG R, et al. Sustainable synergies for the subsurface combining groundwater energy with remediation: an illustration with 2 cases[C]// First International Conference on Frontiers in Shallow Subsurface Technology. 2010. [78] HIESTER U and SCHRENK V. Thermally enhanced in-situ remediations beneath buildings during their continued usage – new source removal options for urban sites[C]// ConSoil 2008. 2008. [79] US Army Corps of Engineers, Design: in situ thermal remediation: EM 200-1-21[Z]. 2014.https://www.publications.usace.army.mil/. [80] BAKER R S and HERON G. In situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation[EB/OL]. [2022-02-25]. https://terratherm.com/pdf/white%20papers/paper11-11-6-09.pdf, 2014. [81] TIMMONS D G, SANDLIN S and TRUSSELL S. Combined technologies: thermal conduction heating and steam enhanced extraction removes 99% of estimated contaminant mass[Z]. EPA's Office of Superfund Remediation and Technology Innovation (OSRTI), Technology News and Trends, 2012, No. 61. [82] ROLAND U, HOLZER F and KOPINKE F D. Combining different frequencies for electrical heating of saturated and unsaturated soil zones[J]. Chemical Engineering & Technology, 2011, 34(10): 1645-1651. [83] 李丁, 李瑞海, 张文清, 等. 一种用于原位燃气热脱附修复的地表覆盖结构: CN213134474U[P]. 2021-05-07. [84] HOGGES A R and FALTA R W. Vertical confinement of Injected steam in the vadose zone using cold air injection[J]. Vadose Zone Journal, 2008, 7(2): 732-740. doi: 10.2136/vzj2007.0093 [85] 迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. doi: 10.12030/j.cjee.201905110 [86] BEYKE G and FLEMING D. In situ remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2005, 15(3): 5-22. doi: 10.1002/rem.20047 [87] HEGELE P R and MCGEE B C W. Managing the negative impacts of groundwater flow on electrothermal remediation[J]. Remediation Journal, 2017, 27(3): 29-38. doi: 10.1002/rem.21516 [88] 李书鹏, 焦文涛, 李鸿炫, 等. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 12(9): 2037-2048. doi: 10.12030/j.cjee.201905108 [89] 李奉才, 胡佳晨, 郑阳, 等. 一种土壤原位热脱附修复系统: CN112872004A[P]. 2021-06-1. [90] 许优, 顾海林, 詹明秀, 等. 有机污染土壤异位直接热脱附装置节能降耗方案[J]. 环境工程学报, 2019, 13(9): 2074-2082. doi: 10.12030/j.cjee.201906011