2021 Volume 40 Issue 2
Article Contents

HU Xinxiao, HOU Xingwang, LIU Qian, LIU Jiyan, JIANG Guibin. Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research[J]. Environmental Chemistry, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101
Citation: HU Xinxiao, HOU Xingwang, LIU Qian, LIU Jiyan, JIANG Guibin. Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research[J]. Environmental Chemistry, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101

Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research

  • Corresponding author: LIU Jiyan, liujy@rcees.ac.cn
  • Received Date: 01/04/2020
    Fund Project: Supported by the National Key Research and Development Project (2018YFC1800702).
  • Stable isotope analysis is an effective tool to characterize sources and transformation processes of environmental pollutants. A variety of reliable techniques have been developed for stable chlorine/bromine isotope analysis, which were applied in various organic pollutants, such as chlorinated ethenes, chlorobenzene, bromophenols, polybrominated diphenyl ethers and organic chlorinated pesticides. This paper reviewed the technologies for stable chlorine/bromine isotope analysis in recent years. The applications of those techniques to trace the sources of organic pollutants and identify the degradation pathways of organic pollutants were introduced. The problems of stable chlorine/bromine isotope analysis technologies in instrumental methods, analysis strategies, and theoretical knowledge were discussed, and their development and applications in the field of environmental science were prospected as well.
  • 加载中
  • [1] HAO Y F, LI Y M, HAN X, et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017:Concentrations, temporal trends and potential sources[J]. Environmental Pollution, 2019, 249:381-389.

    Google Scholar Pub Med

    [2] TEUTEN E L, XU L, REDDY C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711):917-920.

    Google Scholar Pub Med

    [3] UNSON M D, HOLLAND N D, FAULKNER D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue[J]. Marine Biology, 1994, 119(1):1-11.

    Google Scholar Pub Med

    [4] HORST A, HOLMSTRAND H, ANDERSSON P, et al. Stable bromine isotopic composition of methyl bromide released from plant matter[J]. Geochimica et Cosmochimica Acta, 2014, 125:186-195.

    Google Scholar Pub Med

    [5] ZHAO L, HU G, YAN Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China:Using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201:201-211.

    Google Scholar Pub Med

    [6] LI Y, ZHANG H, SHAO L, et al. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis[J]. Journal of Environmental Sciences, 2019, 82:47-56.

    Google Scholar Pub Med

    [7] MASBOU J, DROUIN G, PAYRAUDEAU S, et al. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides[J]. Chemosphere, 2018, 213:368-376.

    Google Scholar Pub Med

    [8] VOGT C, DORER C, MUSAT F, et al. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons-from enzymes to the environment[J]. Current Opinion in Biotechnology, 2016, 41:90-98.

    Google Scholar Pub Med

    [9] CHEVALLIER M L, COOPER M, KUEMMEL S, et al. Distinct carbon isotope fractionation signatures during biotic and abiotic reductive transformation of chlordecone[J]. Environmental Science & Technology, 2018, 52(6):3615-3624.

    Google Scholar Pub Med

    [10] CINCINELLI A, PIERI F, ZHANG Y, et al. Compound specific isotope analysis (CSIA) for chlorine and bromine:A review of techniques and applications to elucidate environmental sources and processes[J]. Environmental Pollution, 2012, 169:112-127.

    Google Scholar Pub Med

    [11] KAUFMANN R, LONG A, BENTLEY H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309(5966):338-340.

    Google Scholar Pub Med

    [12] EGGENKAMP H G M, COLEMAN M L. Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples[J]. Chemical Geology, 2000, 167:393-402.

    Google Scholar Pub Med

    [13] ELSNER M, JOCHMANN M A, HOFSTETTER T B, et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9):2471-2491.

    Google Scholar Pub Med

    [14] KOZELL A, YECHESKEL Y, BALABAN N, et al. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA)[J]. Environmental Science and Technology, 2015, 49(7):4433-4440.

    Google Scholar Pub Med

    [15] SHOUAKAR-STASH O, DRIMMIE R J, ZHANG M, et al. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry, 2006, 21(5):766-781.

    Google Scholar Pub Med

    [16] SHOUAKAR-STASH O, FRAPE S K, DRIMMIE R J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005, 77(13):4027-4033.

    Google Scholar Pub Med

    [17] NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria[J]. Environmental Science & Technology, 2002, 36(20):4389-4394.

    Google Scholar Pub Med

    [18] MA Y Q, PENG Z K, CHEN Y J, et al. High precise determination of bromine isotopic ratios by positive thermal ionization mass spectrometry using static multicollection based on Cs2Br+ Ions[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2):186-191.

    Google Scholar Pub Med

    [19] SAKAGUCHI-SOEDER K, JAGER J, GRUND H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18):3077-3084.

    Google Scholar Pub Med

    [20] VAN ACKER M R M D, SHAHAR A, YOUNG E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13):4663-4667.

    Google Scholar Pub Med

    [21] AEPPLI C, HOLMSTRAND H, ANDERSSON P, et al. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing[J]. Analytical Chemistry, 2010, 82(1):420-426.

    Google Scholar Pub Med

    [22] 刘咸德,李莉,池逸,等.气相色谱-高分辨飞行时间质谱法测定大气中六氯苯的氯同位素丰度比值[J]. 质谱学报,2016,37(1):10-16. LIU X D, LI L, CHI Y, et al. Chlorine isotope analysis of hexachlorobenzene in air using high resolution time-of-flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1):10-16(in Chinese).

    Google Scholar Pub Med

    [23] HOLT B D, STURCHIO N C, ABRAJANO T A, et al. Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine[J]. Analytical Chemistry, 1997, 69(14):2727-2733.

    Google Scholar Pub Med

    [24] JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent[J]. Analytical Chemistry, 1997, 69(20):4259-4266.

    Google Scholar Pub Med

    [25] HOLT B D, HERATY L J, STURCHIO N C. Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine[J]. Environmental Pollution, 2001, 113(3):263-269.

    Google Scholar Pub Med

    [26] HITZFELD K L, GEHRE M, RICHNOW H H. A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur[J]. Rapid Communications in Mass Spectrometry, 2011, 25(20):3114-3122.

    Google Scholar Pub Med

    [27] RENPENNING J, HITZFELD K L, GILEVSKA T, et al. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS[J]. Analytical Chemistry, 2015, 87(5):2832-2839.

    Google Scholar Pub Med

    [28] FRANKE S, KUEMMEL S, NIJENHUIS I. Liquid chromatography/isotope ratio mass spectrometry analysis of halogenated benzoates for characterization of the underlying degradation reaction in Thauera chlorobenzoica CB-1T[J]. Rapid Communications in Mass Spectrometry, 2018, 32(11):906-912.

    Google Scholar Pub Med

    [29] HOLMSTRAND H, ANDERSSON P, GUSTAFSSON O. Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry[J]. Analytical Chemistry, 2004, 76(8):2336-2342.

    Google Scholar Pub Med

    [30] NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry[J]. Analytica Chimica Acta, 2002, 455(1):1-9.

    Google Scholar Pub Med

    [31] SYLVA S P, BALL L, NELSON R K, et al. Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(20):3301-3305.

    Google Scholar Pub Med

    [32] GELMAN F, HALICZ L. High precision determination of bromine isotope ratio by GC-MC-ICPMS[J]. International Journal of Mass Spectrometry, 2010, 289(2/3):167-169.

    Google Scholar Pub Med

    [33] ZAKON Y, HALICZ L, GELMAN F. Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by ion chromatography/multicollector-ICPMS[J]. Analytical Chemistry, 2014, 86(13):6495-6500.

    Google Scholar Pub Med

    [34] ZAKON Y, HALICZ L, LEV O, et al. Compound-specific bromine isotope ratio analysis using gas chromatography/quadrupole mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(17):1951-1956.

    Google Scholar Pub Med

    [35] HECKEL B, RODRIGUEZ-FERNANDEZ D, TORRENTO C, et al. Compound-specific chlorine isotope analysis of tetrachloromethane and trichloromethane by gas chromatography-isotope ratio mass spectrometry vs gas chromatography-quadrupole mass spectrometry:method development and evaluation of precision and trueness[J]. Analytical Chemistry, 2017, 89(6):3411-3420.

    Google Scholar Pub Med

    [36] BERNSTEIN A, SHOUAKAR-STASH O, EBERT K, et al. Compound-specific chlorine isotope analysis:A comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study[J]. Analytical Chemistry, 2011, 83(20):7624-7634.

    Google Scholar Pub Med

    [37] 陈柳竹. 典型多溴联苯醚单体碳溴同位素效应研究[D]. 北京:中国地质大学,2017. CHEN L Z. Study on carbon and bromine isotopic effects of typical PBDEs congeners[D] Beijing:China University of Geosciences, 2017(in Chinese).

    Google Scholar Pub Med

    [38] JIN B, LASKOV C, ROLLE M, et al. Chlorine isotope analysis of organic contaminants using GC-qMS:Method optimization and comparison of different evaluation schemes[J]. Environmental Science & Technology, 2011, 45(12):5279-5286.

    Google Scholar Pub Med

    [39] SCHIMMELRNANN A, QI H, COPLEN T B, et al. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements:caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils[J]. Analytical Chemistry, 2016, 88(8):4294-4302.

    Google Scholar Pub Med

    [40] TANG C M, TAN J H, XIONG S S, et al. Chlorine and bromine isotope fractionation of halogenated organic pollutants on gas chromatography columns[J]. Journal of Chromatography A, 2017, 1514:103-109.

    Google Scholar Pub Med

    [41] TANG C M, TAN J H. Simultaneous observation of concurrent two-dimensional carbon and chlorine/bromine isotope fractionations of halogenated organic compounds on gas[J]. Analytica Chimica Acta, 2018, 1039:172-182.

    Google Scholar Pub Med

    [42] JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions:scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16(9/10):1021-1031.

    Google Scholar Pub Med

    [43] CHEN L Z, SHOUAKAR-STASH O, MA T, et al. Significance of stable carbon and bromine isotopes in the source identification of PBDEs[J]. Chemosphere, 2017, 186:160-166.

    Google Scholar Pub Med

    [44] BOWDEN B F, TOWERZEY L, JUNK P C. A new brominated diphenyl ether from the marine sponge Dysidea herbacea[J]. Australian Journal of Chemistry, 2000, 53(4):299-301.

    Google Scholar Pub Med

    [45] KUNIYOSHI M, YAMADA K, HIGA T. A biologically active diphenyl ether from the green alga Cladophora fascicularis[J]. Experientia, 1985, 41(4):523-524.

    Google Scholar Pub Med

    [46] CHUNG H Y, MA W C J, ANG P O, et al. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9):2619-2624.

    Google Scholar Pub Med

    [47] CARRIZO D, UNGER M, HOLMSTRAND H, et al. Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances[J]. Environmental Chemistry, 2011, 8(2):127-132.

    Google Scholar Pub Med

    [48] HOLMSTRAND H, ZENCAK Z, MANDALAKIS M, et al. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane[J]. Applied Geochemistry, 2010, 25(9):1301-1306.

    Google Scholar Pub Med

    [49] DRENZEK N J, TARR C H, EGLINTON T I, et al. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds[J]. Organic Geochemistry, 2002, 33(4):437-444.

    Google Scholar Pub Med

    [50] REDDY C M, XU L, DRENZEK N J, et al. A chlorine isotope effect for enzyme-catalyzed chlorination[J]. Journal of the American Chemical Society, 2002, 124(49):14526-14527.

    Google Scholar Pub Med

    [51] HOLMSTRAND H, GADOMSKI D, MANDALAKIS M, et al. Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating[J]. Environmental Science & Technology, 2006, 40(12):3730-3735.

    Google Scholar Pub Med

    [52] ELSNER M, ZWANK L, HUNKELER D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18):6896-6916.

    Google Scholar Pub Med

    [53] KUNTZE K, KOZELL A, RICHNOW H H, et al. Dual carbon-bromine stable isotope analysis allows distinguishing transformation pathways of ethylene dibromide[J]. Environmental Science and Technology, 2016, 50(18):9855-9863.

    Google Scholar Pub Med

    [54] HOLMSTRAND H, MANDALAKIS M, ZENCAK Z, et al. First compound-specific chlorine-isotope analysis of environmentally-bioaccumulated organochlorines indicates a degradation-relatable kinetic isotope effect for DDT[J]. Chemosphere, 2007, 69(10):1533-1539.

    Google Scholar Pub Med

    [55] PONSIN V, TORRENTO C, LIHL C, et al. Compound-specific chlorine isotope analysis of the herbicides atrazine, acetochlor, and metolachlor[J]. Analytical Chemistry, 2019, 91(22):14290-14298.

    Google Scholar Pub Med

    [56] HOEYNG D, PROMMER H, BLUM P, et al. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers[J]. Journal of Contaminant Hydrology, 2015, 174:10-27.

    Google Scholar Pub Med

    [57] ROSELL M, PALAU J, HATIJAH MORTAN S, et al. Dual carbon-chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp[J]. Science of the Total Environment, 2019, 648:422-429.

    Google Scholar Pub Med

    [58] RODRIGUEZ-FERNANDEZ D, TORRENTO C, PALAU J, et al. Unravelling long-term source removal effects and chlorinated methanes natural attenuation processes by C and Cl stable isotopic patterns at a complex field site[J]. Science of the Total Environment, 2018, 645:286-296.

    Google Scholar Pub Med

    [59] HERMON L, DENONFOUX J, HELLAL J, et al. Dichloromethane biodegradation in multi-contaminated groundwater:Insights from biomolecular and compound-specific isotope analyses[J]. Water Research, 2018, 142:217-226.

    Google Scholar Pub Med

    [60] RODRIGUEZ-FERNANDEZ D, TORRENTO C, GUIVERNAU M, et al. Vitamin B12 effects on chlorinated methanes-degrading microcosms:Dual isotope and metabolically active microbial populations assessment[J]. Science of the Total Environment, 2018, 621:1615-1625.

    Google Scholar Pub Med

    [61] ABE Y, ARAVENA R, ZOPFI J, et al. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene[J]. Environmental Science & Technology, 2009, 43(1):101-107.

    Google Scholar Pub Med

    [62] MURRAY A M, OTTOSEN C B, MAILLARD J, et al. Chlorinated ethene plume evolution after source thermal remediation:Determination of degradation rates and mechanisms[J]. Journal of Contaminant Hydrology, 2019, 227, DOI:10.1016/j.jconhyd.2019.103551.

    Google Scholar Pub Med

    [63] QIAN Y G, CHEN K, LIU Y Q, et al. Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis[J]. Environmental Pollution, 2019, 254, DOI:10.1016/j.envpol.2019.113008.

    Google Scholar Pub Med

    [64] WU L P, MOSES S Y, LIU Y Q, et al. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis[J]. Analytica Chimica Acta, 2019, 1064:56-64.

    Google Scholar Pub Med

    [65] SCHILLING I E, BOPP C E, LAL R, et al. Assessing aerobic biotransformation of hexachlorocyclohexane isomers by compound-specific isotope analysis[J]. Environmental Science & Technology, 2019, 53(13):7419-7431.

    Google Scholar Pub Med

    [66] SCHILLING I E, HESS R, BOLOTIN J, et al. Kinetic isotope effects of the enzymatic transformation of γ-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2[J]. Environmental Science & Technology, 2019, 53(5):2353-2363.

    Google Scholar Pub Med

    [67] BASHIR S, KUNTZE K, VOGT C, et al. Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture[J]. Biodegradation, 2018, 29(4):409-418.

    Google Scholar Pub Med

    [68] BENISRAEL M, WANNER P, ARAVENA R, et al. Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis[J]. International Journal of Phytoremediation, 2019, 21(1):60-69.

    Google Scholar Pub Med

    [69] MARCHESI M, ALBERTI L, SHOUAKAR-STASH O, et al. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions[J]. Science of the Total Environment, 2018, 619:784-793.

    Google Scholar Pub Med

    [70] GOLAN R, GELMAN F, KUDER T, et al. Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil:pathway and isotope effects[J]. Biodegradation, 2019, 30(1):37-46.

    Google Scholar Pub Med

    [71] BERENS M J, ULRICH B A, STREHLAU J H, et al. Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction[J]. Environmental Science-Processes & Impacts, 2019, 21(1):51-62.

    Google Scholar Pub Med

    [72] EHRL B N, GHARASOO M, ELSNER M. Isotope fractionation pinpoints membrane permeability as a barrier to atrazine biodegradation in Gram-negative Polaromonas sp. Nea-C[J]. Environmental Science & Technology, 2018, 52(7):4137-4144.

    Google Scholar Pub Med

    [73] WOODS A, KUNTZE K, GELMAN F, et al. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes[J]. Chemosphere, 2018, 190:211-217.

    Google Scholar Pub Med

    [74] JIN B, NIJENHUIS I, ROLLE M. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation[J]. Isotopes in Environmental and Health Studies, 2018, 54(4):418-434.

    Google Scholar Pub Med

    [75] BERNSTEIN A, RONEN Z, LEVIN E, et al. Kinetic bromine isotope effect:example from the microbial debromination of brominated phenols[J]. Analytical and Bioanalytical Chemistry, 2013, 405(9):2923-2929.

    Google Scholar Pub Med

    [76] ZAKON Y, HALICZ L, GELMAN F. Bromine and carbon isotope effects during photolysis of brominated phenols[J]. Environmental Science and Technology, 2013, 47(24):14147-14153.

    Google Scholar Pub Med

    [77] ELSNER M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants:Principles, prospects and limitations[J]. Journal of Environmental Monitoring, 2010, 12(11):2005-2031.

    Google Scholar Pub Med

    [78] CRETNIK S, THORESON K A, BERNSTEIN A, et al. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria:Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl)[J]. Environmental Science & Technology, 2013, 47(13):6855-6863.

    Google Scholar Pub Med

    [79] RENPENNING J, KELLER S, CRETNIK S, et al. Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene[J]. Environmental Science & Technology, 2014, 48(20):11837-11845.

    Google Scholar Pub Med

    [80] WIEGERT C, AEPPLI C, KNOWLES T, et al. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater[J]. Environmental Science & Technology, 2012, 46(20):10918-10925.

    Google Scholar Pub Med

    [81] KUDER T, VAN BREUKELEN B M, VANDERFORD M, et al. 3D-CSIA:Carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a dehalococcoides culture[J]. Environmental Science & Technology, 2013, 47(17):9668-9677.

    Google Scholar Pub Med

    [82] AEPPLI C, TYSKLIND M, HOLMSTRAND H, et al. Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols:mechanistic study and field application[J]. Environmental Science & Technology, 2013, 47(2):790-797.

    Google Scholar Pub Med

    [83] BERGMANN F D, ABU LABAN N M F H, MEYER A H, et al. Dual (C, H) isotope fractionation in anaerobic low molecular weight (Poly)aromatic hydrocarbon (PAH) degradation:Potential for field studies and mechanistic implications[J]. Environmental Science & Technology, 2011, 45(16):6947-6953.

    Google Scholar Pub Med

    [84] KUDER T, WILSON J T, KAISER P, et al. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE:Microcosm and field evidence[J]. Environmental Science & Technology, 2005, 39(1):213-220.

    Google Scholar Pub Med

    [85] MARIOTTI A, GERMON J C, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation:some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3):413-430.

    Google Scholar Pub Med

    [86] VAN BREUKELEN B M, HUNKELER D, VOLKERING F. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation[J]. Environmental Science & Technology, 2005, 39(11):4189-4197.

    Google Scholar Pub Med

    [87] HUNKELER D, VAN BREUKELEN B M, ELSNER M. Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes[J]. Environmental Science & Technology, 2009, 43(17):6750-6756.

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4158) PDF downloads(170) Cited by(0)

Access History

Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research

Fund Project: Supported by the National Key Research and Development Project (2018YFC1800702).

Abstract: Stable isotope analysis is an effective tool to characterize sources and transformation processes of environmental pollutants. A variety of reliable techniques have been developed for stable chlorine/bromine isotope analysis, which were applied in various organic pollutants, such as chlorinated ethenes, chlorobenzene, bromophenols, polybrominated diphenyl ethers and organic chlorinated pesticides. This paper reviewed the technologies for stable chlorine/bromine isotope analysis in recent years. The applications of those techniques to trace the sources of organic pollutants and identify the degradation pathways of organic pollutants were introduced. The problems of stable chlorine/bromine isotope analysis technologies in instrumental methods, analysis strategies, and theoretical knowledge were discussed, and their development and applications in the field of environmental science were prospected as well.

Reference (87)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint