2023 Volume 42 Issue 1
Article Contents

LI Junsheng, WANG Xuefeng, JIANG Bing, ZHANG Panpan, WANG Paili, WANG Yan, ZHOU Chunwei, WU Yan. Simultaneous determination of 8 cannabinols in industrial hemp by ULTRA performance liquid chromatography-Tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(1): 337-340.
Citation: LI Junsheng, WANG Xuefeng, JIANG Bing, ZHANG Panpan, WANG Paili, WANG Yan, ZHOU Chunwei, WU Yan. Simultaneous determination of 8 cannabinols in industrial hemp by ULTRA performance liquid chromatography-Tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(1): 337-340.

Simultaneous determination of 8 cannabinols in industrial hemp by ULTRA performance liquid chromatography-Tandem mass spectrometry

  • Available Online: 27/01/2023
  • A method for the determination of 8 cannabinol in industrial hemp by ULTRA-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. After drying, the samples were extracted by ultrasonic extraction with anhydrous ethanol, purified by QuEChERS method, and separated on a Luna Omega 1.6 μm Polar C18 (100 mm×2.1 mm) column. Gradient elution was performed with 5 mmol ammonium acetate and acetonitrile as mobile phase, and ion scanning was performed in electrospray negative ion mode. Determination of 8 cannabinol under multiple response monitoring mode. THC-D3 was used as internal standard and quantified by internal standard method. The linear correlation coefficients (R2) of the method were greater than 0.999 in the range of 0—10 μg·kg−1, the limits of detection were 0.02—0.15 μg·kg−1, and the limits of quantification were 0.08—0.50 μg·kg-1. The recoveries at 1 LOQ, 5 LOQ and 10 LOQ levels ranged from 89.9% to 104.7%, and the relative standard deviations (RSD) ranged from 0.9% to 4.1%.
  • 加载中
  • [1] CIOLINO L A, RANIERI T L, TAYLOR A M. Commercial cannabis consumer products part 1: GC–MS qualitative analysis of cannabis cannabinoids [J]. Forensic science international, 2018, 289: 429-437. doi: 10.1016/j.forsciint.2018.05.032

    CrossRef Google Scholar Pub Med

    [2] BARANAUSKAITE J, MARKSA M, IVANAUSKAS L, et al. Development of extraction technique and GC/FID method for the analysis of cannabinoids in Cannabis sativa L. spp. santicha (hemp) [J]. Phytochemical Analysis, 2020, 31(4): 516-521. doi: 10.1002/pca.2915

    CrossRef Google Scholar Pub Med

    [3] BRIGHENTI V, PELLATI F, STEINBACH M, et al. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 143: 228-236. doi: 10.1016/j.jpba.2017.05.049

    CrossRef Google Scholar Pub Med

    [4] CHANG C W, TUNG C W, TSAI C C, et al. Determination of cannabinoids in hemp nut products in Taiwan by HPLC‐MS/MS coupled with chemometric analysis: quality evaluation and a pilot human study [J]. Drug Testing and Analysis, 2017, 9(6): 888-897. doi: 10.1002/dta.2062

    CrossRef Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(1527) PDF downloads(31) Cited by(0)

Access History

Simultaneous determination of 8 cannabinols in industrial hemp by ULTRA performance liquid chromatography-Tandem mass spectrometry

Abstract: A method for the determination of 8 cannabinol in industrial hemp by ULTRA-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. After drying, the samples were extracted by ultrasonic extraction with anhydrous ethanol, purified by QuEChERS method, and separated on a Luna Omega 1.6 μm Polar C18 (100 mm×2.1 mm) column. Gradient elution was performed with 5 mmol ammonium acetate and acetonitrile as mobile phase, and ion scanning was performed in electrospray negative ion mode. Determination of 8 cannabinol under multiple response monitoring mode. THC-D3 was used as internal standard and quantified by internal standard method. The linear correlation coefficients (R2) of the method were greater than 0.999 in the range of 0—10 μg·kg−1, the limits of detection were 0.02—0.15 μg·kg−1, and the limits of quantification were 0.08—0.50 μg·kg-1. The recoveries at 1 LOQ, 5 LOQ and 10 LOQ levels ranged from 89.9% to 104.7%, and the relative standard deviations (RSD) ranged from 0.9% to 4.1%.

  • 工业大麻是指四氢大麻酚(THC)含量低于0.3%的大麻,大麻酚是工业大麻中最重要的化学成分,其中包括大麻酚(CBN)、大麻二酚(CBD)、四氢大麻酚(THC)及其异构体等. 目前,对植物大麻酚的分析方法主要有气相色谱法(GC) [1-2]、高效液相色谱法(HPLC)[3-4]、高效液相色谱-串联质谱法(LC-MS/MS),其他技术包括薄层色谱(TLC)、核磁共振(NMR)和近红外光谱(NIR),这些方法都有其优点和缺点. GC是分析大麻提取物中植物大麻酚最常用的方法,但是,GC分析所需的高温触发了植物大麻酚的酸形式的脱羧,这种分解阻碍了新鲜样品中主要化合物的检测,且存在化合物相关动力学,从而影响了的定量. 此外,高温还可引发其他反应,如氧化和异构化. HPLC灵敏度低、受基质干扰较大,如果使用紫外检测,色谱必须考虑选择性,以避免其他吸收紫外线的化合物的干扰. TLC技术具有快速、简便、廉价等优点,但灵敏度和选择性不如主流技术. NMR具有灵敏、适合定量分析的特点,但价格昂贵. NIR是快速鉴别的方法,不适合定量分析的方法. 高效液相色谱法-串联质谱(LC-MS/MS)法分析范围广、选择性好、灵敏度高、分析结果可靠, 因此,本实验采用高效液相色谱法-串联质谱法同时检测8种大麻酚,检测时间仅为5 min,有效提高检测效率和适用范围,为我国工业大麻的监管提供了重要的技术手段.

    • UFLC-MS /MS 液相色谱-串联质谱仪(Nexera XR 液相色谱仪LC-30A由日本岛津公司生产,AB6500+质谱仪由美国 ABI 公司生产),飞诺美Luna Omega 1.6 μm Polar C18(100 mm×2.1 mm)色谱柱,Thermo Fisher高速冷冻离心机,EYELA 分液漏斗振荡器,KQ-500DB型数控超声波清洗器.

      大麻酚标准品:四氢大麻酚(THC)、大麻二酚(CBD)、大麻萜酚(CBG)、大麻酚(CBN)、四氢大麻酚-D3(THC-D3)、大麻二酚酸(CBDA)、四氢大麻酚酸(THCA)、四氢次大麻酚酸(THCVA)、大麻萜酚酸(CBGA),9种大麻酚标准品均来自于阿尔塔公司(天津). 质谱级甲酸(赛默飞,美国),质谱级乙腈、甲醇(Fisher),乙酸铵,色谱级正己烷. QuEChERS净化管(Waters公司):含150 mg N-丙基乙二胺(PSA)和900 mg无水硫酸镁. 工业大麻样品:工业大麻的花、叶、茎秆和种子均来自于黑龙江省.

    • 精密称取THC、CBD、CBG、CBN、THC-D3、CBDA、THCA、THCVA、CBGA标准品溶液,用甲醇分别稀释成10 mg·L−1单标储备液,置于棕色储液瓶中,-18 ℃冷冻避光保存. 用甲醇稀释得到浓度为0—10 μg·L−1的系列标准工作液,内标物THC-D3浓度为5 μg·L−1.

    • 将工业大麻样品在55℃烘箱中干燥12 h后进行研磨,研磨后称取样品1.0 g(精确到0.01 g)于50 mL离心管中,准确加入50 μL内标中间液THC-D3, 10 mL无水乙醇,涡旋混合5 min后,超声处理30 min,10000 r·min−1离心5 min,提取上清液5 mL待净化.

      将5 mL提取液置于装有N-丙基乙二胺(PSA)填料150 mg、无水硫酸镁900 mg的净化管中,用手剧烈震荡提取1 min,10000 r·min−1离心3 min,取上清液1 mL过0.22 μm有机系滤膜过滤,供UPLC-MS/MS测定.

    • 色谱条件:Luna Omega 1.6 um Polar C18(100 mm×2.1 mm)色谱柱,柱温40 ℃;流速0.25 mL·min−1;进样体积5 μL. 流动相A:5 mmol乙酸铵;流动相B:乙腈. 洗脱梯度:0—0.5 min,50%B;0.5—0.8 min,50%—10%B;0.8—4 min,10%B;4.0—4.1 min,10%—50%B;4.1—5.0 min,50%B.

      质谱条件:电喷雾负离子模式(ESI-);毛细管电压2.5 kV;锥孔电压65 V;脱溶剂气温度150 ℃;源温度150 ℃;脱溶剂气流量500 L·h−1;气帘气流量50 L·h−1. 8种大麻酚及内标物采集方式进行分段采集,0—2.2 min检测采集THCVA、CBDA、THCA、CBGA;2.2—5 min检测采集CBN、THC、CBD、CBG、THC-D3. 8种大麻酚及内标物MRM检测参数信息见表1.

    2.   结果与讨论
    • 提取液选择乙腈、无水乙醇、乙酸乙酯、正己烷进行比较. 由于大麻酚的化学极性相对较强,无水乙醇和乙腈极性强于乙酸乙酯和正己烷,但由于乙腈经济成本较无水乙醇高,综合考虑选用无水乙醇作为提取溶剂. 比较了震荡和超声提取方式,超声30 min时,大麻酚提取效率最高,因此,提取方式选择超声30 min.

    • 比较了Waters ACQUITY UPLC BEH C18 1.7 μm(2.1 mm×50 mm)、Waters AtantisTM T3 3 μm(2.1 mm×50 mm)和飞诺美 Luna Omega 1.6 μm Polar C18(100 mm×2.1 mm). Waters C18色谱柱对于酸性类大麻酚响应值较好(CBDA、CBGA、THCA、THCVA),但其他大麻酚响应值较低(CBD、CBN、THC、THC-D3),CBG未有响应. Waters AtantisTM T3色谱柱可以较好的分离9种大麻酚,但THC-D3响应值较低. 飞诺美 Luna Omega 1.6 μm Polar C18色谱柱能够全部分离出9种大麻酚,且响应值较高,因此色谱柱选择飞诺美 Luna Omega 1.6 μm Polar C18.

    • 流动相比较了乙腈-5 mmol乙酸铵、乙腈-水、甲醇-水和甲醇-5 mmol乙酸铵,结果发现, 乙腈-水带羧酸基团的大麻酚峰展宽,峰型拖尾;甲醇-水带羧酸基团的灵敏度提高,但其他大麻酚灵敏度下降;甲醇-0.5 mmol乙酸铵所有大麻酚灵敏度整体下降,综合考虑响应值,选取乙腈-0.5 mmol乙酸铵.

    • 工业大麻样品基质复杂,其中含有较多的叶绿素、糖类和脂类. 提取液中干扰杂质较多,因此需要对提取液进行净化. 选用了C18 、HLB、Carb-NH2 SPE和QuEChERS四种净化方式,C18对于烃类、油脂吸附效果较为明显,对于复杂基质净化效果一般. HLB能够对油脂、蛋白、磷脂有较好的吸附效果,但对于颜色较深的色素复杂基质效果一般. Carb-NH2 SPE和QuEChERS两种净化方法能够取得较好的回收率,对于色素、糖类等有较好的吸附效果,但Carb-NH2 SPE需要活化、淋洗固相萃取柱等前处理过程,样品处理时间较长,因此选择QuEChERS净化方式.

    • 配制8种大麻酚质量浓度分别为0、0.1、0.2、0.5、1.0、2.0、5.0、10.0 μg·L−1的系列混合标准液,进样体积5 μL, 5.0 μg·L−1THC-D3为内标物. 以8种大麻酚与THC-D3的质量浓度比为横坐标,8种大麻酚与THC-D3的色谱峰面积的比作为纵坐标建立标准曲线. 以3倍信噪比(S/N)和10倍信噪比(S/N)计算检出限(LOD)及定量限(LOQ),结果表明,8种大麻酚在线性范围0—10 μg·L−1均有良好的线性关系,相关系数(R2)均大于0.999(表2).

    • 对已知8种大麻酚含量的工业大麻样品中添加标准物质浓度为1倍定量限、5倍定量限、10倍定量限的标准溶液中间液,按照1.3节前处理过程进行加标回收实验,每个样品分为花叶、茎秆、种子做6次水平. 扣除样品本底值得到每种大麻酚回收率及相对标准偏差,如表3所示,其中THCVA的平均回收率为92.4%—102.3%,精密度为1.3%—3.5%. THCA的平均回收率为91.7%—103.3%,精密度为0.9%—3.9%. THC的平均回收率为92.1%—100.2%,精密度为 1.1%—4.1%. CBG的平均回收率为91.0%—104.9%,精密度为1.9%—3.5%. CBGA的平均回收率为90.6%—98.5%,精密度为1.8%—4.0%. CBN的平均回收率为93.4%—98.6%,精密度为1.1%—3.7%. CBD的平均回收率为91.1%—104.7%,精密度为1.4%—3.1%. CBDA的平均回收率为89.9%—98.5%,精密度为0.9%—4.1%. 结果表明方法精密度良好.

    • 采用本方法对同一产地的6个不同地块的工业大麻样品进行检测,其中CBDA含量为 3.1422%—4.5512%,CBD含量为0.0474%—0.1053%,THC含量为0.0021%—0.0067%,THCA含量为0.0838%—0.1243%,CBG含量为0.0067%—0.0112%,CBGA含量为0.0923%—0.1783%,CBN含量为0.0014%—0.0043%,THCVA含量为0.0072%—0.0212%,其中THC含量<0.3%,符合工业大麻THC含量标准.

    3.   结论
    • 本文建立了一种超高效液相色谱-三重四级杆质谱法同时检测工业大麻样品中四氢大麻酚、大麻二酚、大麻萜酚、大麻酚、大麻二酚酸、四氢大麻酚酸、四氢次大麻酚酸、大麻萜酚酸的检测方法,检测时长仅为5 min. 该方法具有检测大麻酚种类多、检测时间短,能够准确的对大麻酚进行定性、定量的优点. 对于方法学考察研究具有良好的准确性、精密度和稳定性,为我国工业大麻的研究提供了有力的技术支撑.

    Table (3) Reference (4)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint