3种正渗透膜对水中卡马西平的截留

王珏, 黄满红, 张翠翠, 孟李君. 3种正渗透膜对水中卡马西平的截留[J]. 环境工程学报, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
引用本文: 王珏, 黄满红, 张翠翠, 孟李君. 3种正渗透膜对水中卡马西平的截留[J]. 环境工程学报, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
WANG Jue, HUANG Manhong, ZHANG Cuicui, MENG Lijun. Carbamazepine rejection in water by three kinds of forward osmosis membranes[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
Citation: WANG Jue, HUANG Manhong, ZHANG Cuicui, MENG Lijun. Carbamazepine rejection in water by three kinds of forward osmosis membranes[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220

3种正渗透膜对水中卡马西平的截留

  • 基金项目:

    国家自然科学基金资助项目(21477018)

    交通运输部科技项目(2010353343290)

    中央高校基本科研业务费专项资金重点项目(15D111323)

Carbamazepine rejection in water by three kinds of forward osmosis membranes

  • Fund Project:
  • 摘要: 采用3种商业正渗透膜对污水中的卡马西平进行截留,研究了膜活性层朝向、汲取液浓度、流速和汲取液溶质对卡马西平截留效果的影响。结果表明,活性层朝原料液的正渗透(FO)模式对卡马西平的截留效果要优于活性层朝向汲取液的模式。3种膜对卡马西平的截留率随着汲取液浓度的升高有所提高,但高浓度的汲取液时增幅并不显著且会引起严重的盐返混。NaCl是截留卡马西平最适合的汲取液溶质,对卡马西平的截留率随着水通量增加而增加,但是过高的盐返混可能导致卡马西平截留率的下降。醋酸纤维素聚酯网膜是所选3种膜中对卡马西平的截留率较高的膜。这些实验结果可为FO应用于卡马西平废水的处理提供参数。
  • 加载中
  • [1] WANG Zhuo, ZHANG Xihui, HUANG Yong, et al. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China[J]. Environmental Pollution, 2015, 204:223-232
    [2] YOU Luhua, NGUYEN V T, PAL A, et al. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors[J]. Science of the Total Environment, 2015, 536:955-963
    [3] LIU Jinlin, WONG Minghung. Pharmaceuticals and personal care products (PPCPs):A review on environmental contamination in China[J]. Environment International, 2013, 59:208-224
    [4] 温智皓, 段艳平, 孟祥周, 等. 城市污水处理厂及其受纳水体中5种典型PPCPs的赋存特征和生态风险[J]. 环境科学, 2013, 34(3):927-932
    [5] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000:A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211
    [6] NAKADA N, TANISHIMA T, SHINOHARA H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment[J]. Water Research, 2006, 40(17):3297-3303
    [7] 陈卫平, 张炜铃, 潘能, 等. 再生水灌溉利用的生态风险研究进展[J]. 环境科学, 2012, 33(12):4070-4080
    [8] COETSIER C M, SPINELLI S, LIN L, et al. Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant:MECs vs PECs?[J]. Environment International, 2009, 35(5):787-792
    [9] LUTCHMIAH K, VERLIEFDE A R D, ROEST K, et al. Forward osmosis for application in wastewater treatment:A review[J]. Water Research, 2014, 58:179-197
    [10] 胡群辉, 邹昊, 姜莹, 等. 正渗透膜分离关键技术及其应用进展[J]. 膜科学与技术, 2014, 34(5):109-115
    [11] LEE K P, ARNOT T C, MATTIA D. A review of reverse osmosis membrane materials for desalination:Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2):1-22
    [12] ZHAO Shuaifei, ZOU Linda, TANG Chuyang, et al. Recent developments in forward osmosis:Opportunities and challenges[J]. Journal of Membrane Science, 2012, 396:1-21
    [13] 张高旗, 刘海宁, 张凯松. 正渗透处理生活污水过程中的膜污染研究[J]. 中国环境科学, 2013, 33(12):2170-2175
    [14] ZHANG Xiwang, NING Zhiyao, WANG D K, et al. Processing municipal wastewaters by forward osmosis using CTA membrane[J]. Journal of Membrane Science, 2014, 468:269-275
    [15] SALIH H H, WANG Lixia, PATEL V, et al. The utilization of forward osmosis for coal tailings dewatering[J]. Minerals Engineering, 2015, 81:142-148
    [16] HICKENBOTTOM K L, HANCOCK N T, HUTCHINGS N R, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations[J]. Desalination, 2013, 312:60-66
    [17] HAU N T, CHEN S S, NGUYEN N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge[J]. Journal of Membrane Science, 2014, 455:305-311
    [18] WANG Zhiwei, YU Hongguang, MA Jinxing, et al. Recent advances in membrane bio-technologies for sludge reduction and treatment[J]. Biotechnology Advances, 2013, 31(8):1187-1199
    [19] YANGALI-QUINTANILLA V, LI Zhenyu, VALLADARES R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280(1/2/3):160-166
    [20] CODAY B D, ALMARAZ N, CATH T Y. Forward osmosis desalination of oil and gas wastewater:Impacts of membrane selection and operating conditions on process performance[J]. Journal of Membrane Science, 2015, 488:40-55
    [21] 程起跃, 薛罡, 张良亮. 常规工艺强化去除给水系统中的卡马西平[J]. 环境科学与技术, 2011, 34(7):38-41
    [22] 黄裕, 张晗, 董秉直. 纳滤膜去除卡马西平的影响因素研究[J]. 环境科学, 2011, 32(3):705-710
    [23] TANG C Y, SHE Qianhong, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1/2):123-133
    [24] HONG S, ELIMELECH M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes[J]. Journal of Membrane Science, 1997, 132(2):159-181
    [25] XIE Ming, PRICE W E, NGHIEM L D. Rejection of pharmaceutically active compounds by forward osmosis:Role of solution pH and membrane orientation[J]. Separation and Purification Technology, 2012, 93:107-114
    [26] MCCUTCHEON J R, ELIMELECH M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318(1/2):458-466
    [27] MCCUTCHEON J R, MCGINNIS R L, ELIMELECH M. Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278(1/2):114-123
    [28] XIE Ming, NGHIEM L D, PRICE W E, et al. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis[J]. Water Research, 2012, 46(8):2683-2692
    [29] ACHILLI A, CATH T Y, CHILDRESS A E. Selection of inorganic-based draw solutions for forward osmosis applications[J]. Journal of Membrane Science, 2010, 364(1/2):233-241
    [30] AKTHER N, SODIQ A, GIWA A, et al. Recent advancements in forward osmosis desalination:A review[J]. Chemical Engineering Journal, 2015, 281:502-522
  • 加载中
计量
  • 文章访问数:  2429
  • HTML全文浏览数:  1848
  • PDF下载数:  333
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-03
  • 刊出日期:  2017-01-05
王珏, 黄满红, 张翠翠, 孟李君. 3种正渗透膜对水中卡马西平的截留[J]. 环境工程学报, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
引用本文: 王珏, 黄满红, 张翠翠, 孟李君. 3种正渗透膜对水中卡马西平的截留[J]. 环境工程学报, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
WANG Jue, HUANG Manhong, ZHANG Cuicui, MENG Lijun. Carbamazepine rejection in water by three kinds of forward osmosis membranes[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220
Citation: WANG Jue, HUANG Manhong, ZHANG Cuicui, MENG Lijun. Carbamazepine rejection in water by three kinds of forward osmosis membranes[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 197-204. doi: 10.12030/j.cjee.201508220

3种正渗透膜对水中卡马西平的截留

  • 1.  东华大学环境科学与工程学院, 上海, 201620
  • 2.  国家环境保护纺织工业污染防治工程技术中心, 上海, 201620
基金项目:

国家自然科学基金资助项目(21477018)

交通运输部科技项目(2010353343290)

中央高校基本科研业务费专项资金重点项目(15D111323)

摘要: 采用3种商业正渗透膜对污水中的卡马西平进行截留,研究了膜活性层朝向、汲取液浓度、流速和汲取液溶质对卡马西平截留效果的影响。结果表明,活性层朝原料液的正渗透(FO)模式对卡马西平的截留效果要优于活性层朝向汲取液的模式。3种膜对卡马西平的截留率随着汲取液浓度的升高有所提高,但高浓度的汲取液时增幅并不显著且会引起严重的盐返混。NaCl是截留卡马西平最适合的汲取液溶质,对卡马西平的截留率随着水通量增加而增加,但是过高的盐返混可能导致卡马西平截留率的下降。醋酸纤维素聚酯网膜是所选3种膜中对卡马西平的截留率较高的膜。这些实验结果可为FO应用于卡马西平废水的处理提供参数。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回