不同季节工业城市大气颗粒物浓度监测与聚类分析

丁朔, 沈仕亮, 黄远东. 不同季节工业城市大气颗粒物浓度监测与聚类分析[J]. 环境工程学报, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
引用本文: 丁朔, 沈仕亮, 黄远东. 不同季节工业城市大气颗粒物浓度监测与聚类分析[J]. 环境工程学报, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
DING Shuo, SHEN Shiliang, HUANG Yuandong. Monitoring and cluster analysis of particulate matters in an industrial city in different seasons[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
Citation: DING Shuo, SHEN Shiliang, HUANG Yuandong. Monitoring and cluster analysis of particulate matters in an industrial city in different seasons[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128

不同季节工业城市大气颗粒物浓度监测与聚类分析

  • 基金项目:
  • 中图分类号: X513

Monitoring and cluster analysis of particulate matters in an industrial city in different seasons

  • Fund Project:
  • 摘要: 以2015年4月、8月、12月和2016年1月作为4个季节典型月,在福建省三明市第二中学环境监测站进行了4个时段的颗粒物粒径分布监测,采样粒径段为10~10 000 nm。粒径谱分布显示,质量谱4个季节均为3峰,可能存在煤烟型污染的特征;表面积谱秋季为3峰,其余为双峰。爱根核模态颗粒物对总数浓度贡献最大,积聚模态颗粒物对总表面积浓度贡献最大并且是总质量浓度的重要贡献部分。总质量浓度上,春季污染最重,其余3季相差不大,积聚态颗粒物成分具有明显日差异性。春季更容易发生新粒子形成事件。后向轨迹模型结果表明:在春季,主要观测到来向为我国西南地区靠近华中地区,我国西南方向、东南沿海地区气团颗粒物浓度较高;在夏季,主要观测到来向为我国华中地区,气团存在较高的颗粒物浓度;在秋季,观测到来向为我国西南地区以及我国北方,气团颗粒物浓度较高;在冬季,主要观测到来向为我国西南方向和靠近我国东北地区,气团颗粒物浓度相对较高。全年后向轨迹模型显示,三明市附近地区为气团迁移最频繁方向,但迁移速度较慢,其携带了较多的积聚态颗粒物。此外,我国西南方向来向气团,我国西北地区来向气团,我国东南方向的海上来向气团以及我国中部地区来向气团均观测到了较多的积聚态颗粒物。
  • 加载中
  • [1] DUSEK U,FRANK G P,HILDEBRANDT L,et al.Size matters more than chemistry for cloud-nucleating ability of aerosol particles[J].Science,2006,312(5778):1375-1378
    [2] WANG Z B,HU M,ZENG L W,et al.Measurements of particle number size distributions and optical properties in urban Shanghai during 2010 World Expo:Relation to air mass history[J].Tellus Series B:Chemical & Physical Meteorology,2014,66(1):1175-1176
    [3] 古金霞,杜世勇,田维,等.济南市春季大气颗粒物的谱分布特征[J].南开大学学报(自然科学版),2014,47(1):93-98
    [4] WHITBY K T.Physical characteristics of sulfur aerosols[J].Atmospheric Environment,1978,12(1/2/3):135-159
    [5] HUSSEIN T.Indoor and outdoor aerosol particle size characterization in Helsinki[J].Report Series in Aerosol Science,2005,74:1-53
    [6] HUSSEIN T,DALMASO M,PETAJA T,et al. Evaluation of an automatic algorithm for fitting the particle number size distributions[J].Boreal Environment Research,2005,10(5):337-355
    [7] ZHANG R J,WANG M X,FU J Z,et al.Preliminary research on the size distribution of aerosols in Beijing[J].Advances in Atmospheric Sciences,2001,18(2):225-230
    [8] WU Z J,HU M,LIN P,et al.Particle number size distribution in the urban atmosphere of Beijing, China[J].Atmospheric Envionment,2008,42(34):7967-7980
    [9] WEHNER B,WIEDENSOHLER A,TUCH T M,et al. Variability of the aerosol number size distribution in Beijing,China:New particle formation,dust storms,and high continental background[J].Geophysical Research Letters,2004,31(22):217-244
    [10] STANIER C O,KHLYSTOV A Y,PANDIS S N,et al. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh air quality study (PAQS)[J].Atmospheric Environment,2004,38(20):3275-3284
    [11] 许鹏举.济南城区大气颗粒物数浓度及粒径分布特征研究[D].济南:山东大学,2011
    [12] YUE D L,HU M,WU Z J,et al.Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes[J].Atmospheric Chemistry & Physics,2010,10(19):9431-9439
    [13] YUE D L,HU M,WU Z J,et al.Characteristics of aerosol size distributions and new particle formation in the summer in Beijing[J].Journal of Geophysical Research D:Atmospheres,2009,114(14):1159-1171
    [14] CHENG Y F,EICHLER A W,SU H,et al.Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China[J].Atmospheric Environment,2008,42(25):6351-6372
    [15] 邵玉海,丁朔,南嘉良,等.三明市大气颗粒物数浓度与粒径分布季节特征[J].复旦学报(自然科学版),2017,56(3):290-295
    [16] XU L L,CHEN X Q,CHEN J S,et al. Seasonal variations and chemical compositions of PM2.5,aerosol in the urban area of Fuzhou,China[J]. Atmospheric Research,2012,104(1):264-272
    [17] KITTELSON D B.Engines and nanoparticals:A review[J].Journal of Aerosol Science,1998,29(5/6):575-588
    [18] BIRMILI W,WIEDENSOHLER A.New particle formation in the continental boundary layer:Meteorological and gas phase parameter influence[J].Geophysical Research Letters,2000,27(20):3325-3328
    [19] KANEHIRO H,TATEKAWA Y,NAKAJIMA Y.Growth rates of nucleation mode particles in Hyytiala during 2003-2009:Variation with particle size,season, data analysis method and ambient conditions[J].Atmospheric Chemistry & Physics,2011,11(24):12865-12886
    [20] WU Z J,HU M,LIU S,et al.New particle formation in Beijing,China:Statistical analysis of a 1-year data set[J].Crystengcomm,1990,17(4):797-806
    [21] YU J H,GUINO B,YU T,et al. Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing[J].Advances in Atmospheric Sciences,2005,22(3):401-407
    [22] DALMASO M,KULMALA M,LEHTINEN K E J,et al.Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers[J].Journal of Geophysical Research D:Atmospheres,2002,107:1-10
    [23] KULMALA M,PETAJM,DALMASO M,et al. Formation and growth rates of ultrafine atmospheric particles:A review of observations[J].Journal of Aerosol Science,2004,35(2):143-176
    [24] 赵德山,王明星.煤烟型城市污染大气气溶胶[M].北京:中国环境科学出版社,1991
    [25] 高健,王进,程淑会,等.济南夏季大气颗粒物粒径分布特征及来源机理分析[J].中国科学院研究生院学报,2007,24(5):680-687
    [26] 钱凌,银燕,童尧清,等.南京北郊大气细颗粒物的粒径分布特征[J].中国环境科学,2008,28(1):18-22
    [27] WANG Z B,HU M,MOGENSEN D,et al.The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China[J].Atmospheric Chemistry & Physics,2013,13(6):14977-15005
    [28] YUE D L,HU M,ZHANG R Y,et al.The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing[J]. Atmospheric Chemistry & Physics,2010,10(10):4953-4960
    [29] ZHANG R,KHALIZOV A,WANG L,et al.Nucleation and Growth ofNanoparticles in the Atmosphere[J].Chemical Reviews,2011,112(3):1957-2011
    [30] LIU S,HU M,WU Z J,et al.Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China[J].Atmospheric Environment,2008,42(25):6275-6283
  • 加载中
计量
  • 文章访问数:  1909
  • HTML全文浏览数:  1601
  • PDF下载数:  318
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-12
  • 刊出日期:  2017-12-07
丁朔, 沈仕亮, 黄远东. 不同季节工业城市大气颗粒物浓度监测与聚类分析[J]. 环境工程学报, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
引用本文: 丁朔, 沈仕亮, 黄远东. 不同季节工业城市大气颗粒物浓度监测与聚类分析[J]. 环境工程学报, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
DING Shuo, SHEN Shiliang, HUANG Yuandong. Monitoring and cluster analysis of particulate matters in an industrial city in different seasons[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128
Citation: DING Shuo, SHEN Shiliang, HUANG Yuandong. Monitoring and cluster analysis of particulate matters in an industrial city in different seasons[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6393-6403. doi: 10.12030/j.cjee.201606128

不同季节工业城市大气颗粒物浓度监测与聚类分析

  • 1. 上海理工大学环境与建筑学院, 上海 200093
基金项目:

摘要: 以2015年4月、8月、12月和2016年1月作为4个季节典型月,在福建省三明市第二中学环境监测站进行了4个时段的颗粒物粒径分布监测,采样粒径段为10~10 000 nm。粒径谱分布显示,质量谱4个季节均为3峰,可能存在煤烟型污染的特征;表面积谱秋季为3峰,其余为双峰。爱根核模态颗粒物对总数浓度贡献最大,积聚模态颗粒物对总表面积浓度贡献最大并且是总质量浓度的重要贡献部分。总质量浓度上,春季污染最重,其余3季相差不大,积聚态颗粒物成分具有明显日差异性。春季更容易发生新粒子形成事件。后向轨迹模型结果表明:在春季,主要观测到来向为我国西南地区靠近华中地区,我国西南方向、东南沿海地区气团颗粒物浓度较高;在夏季,主要观测到来向为我国华中地区,气团存在较高的颗粒物浓度;在秋季,观测到来向为我国西南地区以及我国北方,气团颗粒物浓度较高;在冬季,主要观测到来向为我国西南方向和靠近我国东北地区,气团颗粒物浓度相对较高。全年后向轨迹模型显示,三明市附近地区为气团迁移最频繁方向,但迁移速度较慢,其携带了较多的积聚态颗粒物。此外,我国西南方向来向气团,我国西北地区来向气团,我国东南方向的海上来向气团以及我国中部地区来向气团均观测到了较多的积聚态颗粒物。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回