纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制

艾平, 张济韬, 席江, 沈子赢, 杨志浩, 陆逸, 胡钗. 纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制[J]. 环境工程学报, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
引用本文: 艾平, 张济韬, 席江, 沈子赢, 杨志浩, 陆逸, 胡钗. 纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制[J]. 环境工程学报, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
AI Ping, ZHANG Jitao, XI Jiang, SHEN Ziying, YANG Zhihao, LU Yi, HU Chai. Promotion mechanism of Lignocellulose ethanol vinasse addition on mixed anaerobic fermentation of rice straw and swine manure[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
Citation: AI Ping, ZHANG Jitao, XI Jiang, SHEN Ziying, YANG Zhihao, LU Yi, HU Chai. Promotion mechanism of Lignocellulose ethanol vinasse addition on mixed anaerobic fermentation of rice straw and swine manure[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001

纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制

  • 基金项目:

    国家自然科学基金资助项目(51406064)

    中央高校基本科研业务费专项(2015PY077)

  • 中图分类号: X705;S713

Promotion mechanism of Lignocellulose ethanol vinasse addition on mixed anaerobic fermentation of rice straw and swine manure

  • Fund Project:
  • 摘要: 纤维乙醇生产会伴随产出大量酸性糟液。利用厌氧技术处理糟液存在C/N低、pH值低等难题,采用糟液与秸秆、猪粪混合后厌氧发酵是一种有效的糟液处理途径。秸秆添加糟液后,TS比例为3%,6%和9%时各组产气量分别为627.8、585.6和443.9 mL·g-1 TS,大幅度高于不添加糟液的秸秆对照组产气量292.5 mL·g-1 TS,且嗜氢产甲烷途径增强,甲烷体积分数从低于60%增至70%以上。猪粪添加糟液在较低TS浓度3%时产气量最高676.7 mL·g-1 TS,秸秆和猪粪按TS 1:1的比例混合时添加糟液的产气效果最佳。秸秆添加糟液的最大VFAs比秸秆对照高2.8~4.7倍,产气延迟增加,从混合型发酵变为典型的丁酸型发酵;猪粪添加糟液后VFAs浓度相对较低,产气启动快,从混合型发酵转变为典型的丙酸型发酵,说明糟液在不同碳源条件下,有着不同的代谢促进途径。糟液与农业废弃物混合厌氧发酵,是一种高效的共发酵体系。糟液在刺激促进秸秆、猪粪产气提升和解除抑制风险的同时,自身也得到高效降解利用。
  • 加载中
  • [1] 邵丽杰,寇巍,曹焱鑫,等. 纤维素酶、半纤维素酶降解膨化玉米秸秆工艺优化[J]. 环境工程学报,2014,8(10):4373-4378
    [2] 王殿龙,艾平,鄢烈亮,等. 稻秸厌氧消化纤维制取乙醇实验研究[J]. 农业机械学报,2015,46(5):156-163
    [3] HAMELINCK C N, HOOIJDONK G V, FAAIJ A P C. Ethanol from lignocellulosic biomass:Techno-economic performance in short-, middle-and long-term[J]. Biomass & Bioenergy,2005,28(4):384-410
    [4] YE S, CHENG J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J]. Bioresource Technology,2005,96(14):1599-1606
    [5] 赵浩浩.纤维乙醇-气双发酵废水的回用研究[D].郑州:郑州大学,2015
    [6] 朱振兴,颜涌捷, 亓伟,等. 铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2):27-30
    [7] MORAES B S, TRIOLO J M, LECONA V P, et al. Biogas production within the bioethanol production chain:Use of co-substrates for anaerobic digestion of sugar beet vinasse[J]. Bioresource technology,2015,190:227-234
    [8] VLISSIDIS A, ZOUBOULIS A I. Thermophilic anaerobic digestion of alcohol distillery wastewaters[J]. Bioresource Technology,1993,43(2):131-140
    [9] RODRIGUEZCHIANG L, LLORCA J, DAHL O. Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition[J]. Bioresource Technology,2016,218:(1):84-91
    [10] RINZEMA A, VEEN H, LETTINGA G, et al. Anaerobic digestion of triglyceride emulsions in expanded granular sludge bed reactors with modified sludge separators[J]. Environmental Technology,1993,14(5):423-432
    [11] 张仙梅, 云斯宁, 杜玉凤,等. 沼气厌氧发酵生物催化剂研究进展与展望[J]. 农业机械学报,2015,46(5):141-155
    [12] 张全国.沼气技术及其应用[M].2版.北京:化学工业出版社,2008
    [13] ROY R, CONRAD R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil[J]. FEMS Microbiology Ecology,1999,28(1):49-61
    [14] 李红丽, 曹霏霏, 王岩. 挥发性脂肪酸对厌氧干式发酵产甲烷的影响[J]. 环境工程学报,2014,8(6):2572-2578
    [15] SIEGERT I, BANKS C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors[J]. Process Biochemistry,2005,40(11):3412-3418
    [16] 陶颖,杨晓瑞,朱建良,等. 酸碱调控及底物浓度对木糖发酵产酸特性的影响[J]. 环境工程学报,2013,7(5):1913-1918
    [17] PARNAUDEAU V, CONDOM N, OLIVER R, et al. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes[J]. Bioresource Technology,2008,99(6):1553-1562
    [18] MORAES B S, TRIOLO J M, LECONA V P, et al. Biogas production within the bioethanol production chain:Use of co-substrates for anaerobic digestion of sugar beet vinasse[J]. Bioresource Technology,2015,190:227-234
    [19] JÚNIOR A, KOYAMA M H, JÚNIOR M M D, et al. Thermophilic anaerobic digestion of raw sugarcane vinasse[J]. Renewable Energy,2016,89:245-252
    [20] KAUR K, PHUTELA U G. Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment[J]. Renewable Energy,2016,92:178-184
    [21] AMNUAYCHEEWA P, HENGAROONPRASAN R, RATTANAPORN K, et al. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids[J]. Industrial Crops and Products,2016,87:247-254
    [22] ZIEMIŃSKI K, KOWALSKA-WENTEL M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse[J]. Bioresource technology,2015,180:274-280
    [23] RADULY B, GYENGE L, SZILVESZTER S, et al. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion[J]. Water Science and Technology,2016,74(2):431-437
    [24] KOTSYURBENKO O R, FRIEDRICH M W, NOZHEVNIKOVA A N, et al. Shift from Acetoclastic to H2-Denpendant Methanogenesis in a West Siberian peat bog a low pH and isolation of an acidophilic Methanobacterium strain[J]. Applied and Environmental Microbiology,2007,73(1):2344-2348
    [25] 郝晓地, 魏静, 曹达啟.废铁屑强化污泥厌氧消化产甲烷可行性分析[J]. 环境科学学报,2016,36(8):2730-2740
    [26] KRAKAT N, WESTPHAL A, SCHMIDT S, et al. Anaerobic digestion of renewable biomass:Thermophilic temperature governs methanogen population dynamics[J]. Applied Environmental Microbiology,2010,76(6):1842-1850
    [27] CHEN X, YUAN H, ZOU D, et al. Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw[J]. Chemical Engineering Journal,2015,273:254-260
    [28] BATSTONE D J, KELLER J, ANGELIDAKI I, et al. The IWA Anaerobic Digestion Model No 1(ADM1)[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research,2002,45(10):65-73
    [29] WANG H, ZHANG Y, ANGELIDAKI I. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions[J]. Water Research,2016,105:314-319
  • 加载中
计量
  • 文章访问数:  2064
  • HTML全文浏览数:  1704
  • PDF下载数:  382
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-02
  • 刊出日期:  2017-12-07
艾平, 张济韬, 席江, 沈子赢, 杨志浩, 陆逸, 胡钗. 纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制[J]. 环境工程学报, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
引用本文: 艾平, 张济韬, 席江, 沈子赢, 杨志浩, 陆逸, 胡钗. 纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制[J]. 环境工程学报, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
AI Ping, ZHANG Jitao, XI Jiang, SHEN Ziying, YANG Zhihao, LU Yi, HU Chai. Promotion mechanism of Lignocellulose ethanol vinasse addition on mixed anaerobic fermentation of rice straw and swine manure[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001
Citation: AI Ping, ZHANG Jitao, XI Jiang, SHEN Ziying, YANG Zhihao, LU Yi, HU Chai. Promotion mechanism of Lignocellulose ethanol vinasse addition on mixed anaerobic fermentation of rice straw and swine manure[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6404-6414. doi: 10.12030/j.cjee.201703001

纤维素乙醇糟液对稻秸猪粪厌氧发酵的促进机制

  • 1.  华中农业大学工学院, 武汉 430070
  • 2.  湖北省健康养殖协同创新中心, 武汉 430070
  • 3.  农业部沼气科学研究所, 成都 610041
基金项目:

国家自然科学基金资助项目(51406064)

中央高校基本科研业务费专项(2015PY077)

摘要: 纤维乙醇生产会伴随产出大量酸性糟液。利用厌氧技术处理糟液存在C/N低、pH值低等难题,采用糟液与秸秆、猪粪混合后厌氧发酵是一种有效的糟液处理途径。秸秆添加糟液后,TS比例为3%,6%和9%时各组产气量分别为627.8、585.6和443.9 mL·g-1 TS,大幅度高于不添加糟液的秸秆对照组产气量292.5 mL·g-1 TS,且嗜氢产甲烷途径增强,甲烷体积分数从低于60%增至70%以上。猪粪添加糟液在较低TS浓度3%时产气量最高676.7 mL·g-1 TS,秸秆和猪粪按TS 1:1的比例混合时添加糟液的产气效果最佳。秸秆添加糟液的最大VFAs比秸秆对照高2.8~4.7倍,产气延迟增加,从混合型发酵变为典型的丁酸型发酵;猪粪添加糟液后VFAs浓度相对较低,产气启动快,从混合型发酵转变为典型的丙酸型发酵,说明糟液在不同碳源条件下,有着不同的代谢促进途径。糟液与农业废弃物混合厌氧发酵,是一种高效的共发酵体系。糟液在刺激促进秸秆、猪粪产气提升和解除抑制风险的同时,自身也得到高效降解利用。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回