含油钻屑的热解特性

周浩, 汪根宝, 李蒙, 张磊, 陈时熠, 向文国. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
引用本文: 周浩, 汪根宝, 李蒙, 张磊, 陈时熠, 向文国. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
ZHOU Hao, WANG Genbao, LI Meng, ZHANG Lei, CHEN Shiyi, XIANG Wenguo. Investigation of pyrolysis characteristics of oil-contaminated drill cuttings[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
Citation: ZHOU Hao, WANG Genbao, LI Meng, ZHANG Lei, CHEN Shiyi, XIANG Wenguo. Investigation of pyrolysis characteristics of oil-contaminated drill cuttings[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140

含油钻屑的热解特性

  • 基金项目:

    国家自然科学基金资助项目(51576042)

  • 中图分类号: X741

Investigation of pyrolysis characteristics of oil-contaminated drill cuttings

  • Fund Project:
  • 摘要: 在石油勘探和页岩气开采中会产生大量废弃含油钻屑,热解是实现含油钻屑废弃物资源化利用的有效途径。采用TG-FTIR研究了含油钻屑热解及产物分布特性,并在固定床上考察了温度以及热解时间对含油钻屑热解气和热解油的影响规律,对含油钻屑提取油与热解回收油成分进行了对比分析。结果表明:含油钻屑热解经历干燥脱气、轻质油热解、重质油分解和矿物质裂解4个过程;350~550℃时热解回收油与含油钻屑提取油中烃类物质组成相似,热解油可以循环利用;含油钻屑550℃下热解80 min,热解油回收率达65%,部分油发生裂解,残渣含油率仅为0.28%。
  • 加载中
  • [1] GRANT A, BRIGGS A D. Toxicity of sediments from around a North Sea oil platform:are metals or hydrocarbons responsible for ecological impacts?[J]. Marine Environmental Research,2002,53(1):95-116
    [2] BAKKE T, KLUNGSØYR J, SANNI S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry[J]. Marine Environmental Research,2013,92:154-169
    [3] SADIQ R, HUSAIN T, VEITCH B, et al. Marine water quality assessment of synthetic-based drilling waste discharges[J]. International Journal of Environmental Studies,2003,60(4):313-323
    [4] WARNER D L, MCCONNELL C L. Assessment of environmental implications of abandoned oil and gas wells[J]. Journal of Petroleum Technology,1993,45(9):874-880
    [5] BENKA-COKER M O, OLUMAGIN A. Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield location in the Niger Delta of Nigeria[J]. Bioresource Technology,1996,55(3):175-179
    [6] BALL A S, STEWART R J, SCHLIEPHAKE K. A review of the current options for the treatment and safe disposal of drill cuttings[J]. Waste Management & Research,2012,30(5):457-473
    [7] 邓皓,谢水祥,王蓉沙,等.含油钻屑高效除油剂及除油机理研究[J].环境工程学报,2013,7(9):3607-3612
    [8] SMITH C J, DELAUNE R D, PATRICK W H, et al. Impact of dispersed and undispersed oil entering a Gulf Coast salt marsh[J]. Environmental Toxicology and Chemistry,1984,3(4):609-616
    [9] KNIGHT R L, KADLEC R H, OHLENDORF H M. The use of treatment wetlands for petroleum industry effluents[J]. Environmental Science & Technology,1999,33(7):973-980
    [10] JI G D, YANG Y S, ZHOU Q, et al. Phytodegradation of extra heavy oil-based drill cuttings using mature reed wetland:an in situ pilot study[J]. Environment international,2004,30(4):509-517
    [11] KOGBARA R B, AYOTAMUNO J M, ONUOMAH I, et al. Stabilisation/solidification and bioaugmentation treatment of petroleum drill cuttings[J]. Applied Geochemistry,2016,71:1-8
    [12] CONNER J R, HOEFFNER S L. A critical review of stabilization/solidification technology[J]. Critical Reviews in Environmental Science and Technology,1998,28(4):397-462
    [13] KOGBARA R B. A review of the mechanical and leaching performance of stabilized/solidified contaminated soils[J]. Environmental Reviews,2013,22(1):66-86
    [14] MOSTAVI E, ASADI S, UGOCHUKWU E. Feasibility study of the potential use of drill cuttings in concrete[J]. Procedia Engineering,2015,118:1015-1023
    [15] KHANPOUR R, SHEIKHI-KOUHSAR M R, ESMAEILZADEH F, et al. Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction[J]. The Journal of Supercritical Fluids,2014,88:1-7
    [16] GOODARZNIA I, ESMAEILZADEH F. Treatment of oil-contaminated drill cuttings of South Pars gas field in Iran using supercritical carbon dioxide[J]. Iranian Journal of Science & Technology Transaction B Engineering,2006,30(5):607-611
    [17] PETRI I, PEREIRA M S, DOS Santos J M, et al. Microwave remediation of oil well drill cuttings[J]. Journal of Petroleum Science and Engineering,2015,134:23-29
    [18] ROBINSON J P, KINGMAN S W, SNAPE C E, et al. Remediation of oil-contaminated drill cuttings using continuous microwave heating[J]. Chemical Engineering Journal,2009,152(2/3):458-463
    [19] ROBINSON J P, SNAPE C E, KINGMAN S W, et al. Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating[J]. Journal of Analytical & Applied Pyrolysis,2008,81(1):27-32
    [20] FALCIGLIA P P, MADDALENA R, MANCUSO G, et al. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy[J]. Journal of Environmental Management,2016,167:196-205
    [21] SCHMIDT H, KAMINSKY W. Pyrolysis of oil sludge in a fluidised bed reactor[J]. Chemosphere,2001,45(3):285-290
    [22] LIU J, JIANG X, HAN X. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed[J]. Journal of Hazardous Materials,2011,185(2/3):1205-1213
    [23] NTUKIDEM J, OMONIGHO R, ANIGHORO S. Thermal desorption as an alternative to cutting reinjection in Niger Delta waste management operations.//SPE Annual Technical Conference and Exhibition,San Antonio,Texas, September 29-October 2,2002[C].Texas:Society of Petroleum Engineers,2002
    [24] ZUPAN T, KAPILA M. Thermal desorption of drill muds and cuttings in Ecuador:The environmental and financially sound solution.//SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Stavanger, Norway, June 26-28,2000[C].Texas:Society of Petroleum Engineers,2000
    [25] SHEN L, ZHANG D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[J]. Fuel,2003,82(4):465-472
    [26] SINA ĞA, GÜLBAY S, USKAN B, et al. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil[J]. Journal of Hazardous Materials,2010,173(1/2/3):420-426
    [27] KOUFOPANOS C A, PAPAYANNAKOS N, MASCHIO G, et al. Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects[J]. The Canadian Journal of Chemical Engineering,1991,69(4):907-915
  • 加载中
计量
  • 文章访问数:  2229
  • HTML全文浏览数:  1999
  • PDF下载数:  429
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-20
  • 刊出日期:  2017-12-07
周浩, 汪根宝, 李蒙, 张磊, 陈时熠, 向文国. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
引用本文: 周浩, 汪根宝, 李蒙, 张磊, 陈时熠, 向文国. 含油钻屑的热解特性[J]. 环境工程学报, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
ZHOU Hao, WANG Genbao, LI Meng, ZHANG Lei, CHEN Shiyi, XIANG Wenguo. Investigation of pyrolysis characteristics of oil-contaminated drill cuttings[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140
Citation: ZHOU Hao, WANG Genbao, LI Meng, ZHANG Lei, CHEN Shiyi, XIANG Wenguo. Investigation of pyrolysis characteristics of oil-contaminated drill cuttings[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6421-6428. doi: 10.12030/j.cjee.201702140

含油钻屑的热解特性

  • 1. 能源热转换及其过程测控教育部重点实验室, 东南大学, 南京 210096
  • 2. 中国石化集团南京工程有限公司, 南京 211100
基金项目:

国家自然科学基金资助项目(51576042)

摘要: 在石油勘探和页岩气开采中会产生大量废弃含油钻屑,热解是实现含油钻屑废弃物资源化利用的有效途径。采用TG-FTIR研究了含油钻屑热解及产物分布特性,并在固定床上考察了温度以及热解时间对含油钻屑热解气和热解油的影响规律,对含油钻屑提取油与热解回收油成分进行了对比分析。结果表明:含油钻屑热解经历干燥脱气、轻质油热解、重质油分解和矿物质裂解4个过程;350~550℃时热解回收油与含油钻屑提取油中烃类物质组成相似,热解油可以循环利用;含油钻屑550℃下热解80 min,热解油回收率达65%,部分油发生裂解,残渣含油率仅为0.28%。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回