拜耳赤泥中镓的酸法浸出及残渣的除氟

路坊海, 肖唐付, 梁杰, 伍玉娇, 黄芳, 龙琼, 肖立华, 刘冰, 周登凤, 曾英. 拜耳赤泥中镓的酸法浸出及残渣的除氟[J]. 环境工程学报, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
引用本文: 路坊海, 肖唐付, 梁杰, 伍玉娇, 黄芳, 龙琼, 肖立华, 刘冰, 周登凤, 曾英. 拜耳赤泥中镓的酸法浸出及残渣的除氟[J]. 环境工程学报, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
LU Fanghai, XIAO Tangfu, LIANG Jie, WU Yujiao, HUANG Fang, LONG Qiong, XIAO Lihua, LIU Bing, ZHOU Dengfeng, ZENG Ying. Leaching gallium from Bayer red mud by acid process and removing fluoride from solution with leaching residues[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
Citation: LU Fanghai, XIAO Tangfu, LIANG Jie, WU Yujiao, HUANG Fang, LONG Qiong, XIAO Lihua, LIU Bing, ZHOU Dengfeng, ZENG Ying. Leaching gallium from Bayer red mud by acid process and removing fluoride from solution with leaching residues[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147

拜耳赤泥中镓的酸法浸出及残渣的除氟

  • 基金项目:

    国家自然科学基金资助项目(551664010,51664009,51664008)

    贵州省科学技术基金项目(黔科合J字[2014]2083号,黔科合LH字[2016]7095)

  • 中图分类号: X705

Leaching gallium from Bayer red mud by acid process and removing fluoride from solution with leaching residues

  • Fund Project:
  • 摘要: 贵州铝土矿资源普遍富含镓元素,拜耳法工艺中,约70%的镓随氧化铝同时溶出,其余30%残存于赤泥中未回收直接外排,造成镓资源的严重浪费。采用酸法工艺浸出拜耳赤泥中镓金属,设计4因素3水平L9(34)正交实验,考察盐酸添加量、浸出温度、浸出时间和液固比对镓浸出效果的交互影响规律,并测试了浸出残渣对含氟水处理性能。结果表明:影响镓浸出率因素的主次顺序依次为盐酸添加量、浸出温度、液固比和浸出时间;最适宜浸出条件为盐酸过量系数1.2,浸出温度70℃,浸出时间3 h,液固比8 mL·g-1;该条件下,镓的浸出率为94.92%,浸出溶液含Ga 3.91 mg·L-1;除氟实验得出最佳除氟条件为,残渣添加量25 g·L-1,pH=4.7,接触时间6 h,旋转速率200 r·min-1;室温下进行3组平行实验,平均除氟率为57.54%,表明浸出残渣具有一定的除氟性能。
  • 加载中
  • [1] KIDA A, SIROHASE T, KAWAGUCHI M. metals contents including precious metals in waste personal computers[J].Material Cycles & Waste Management Research,2009,20(2):59-69
    [2] OKABE, T. The current status and prospect on precious & rare metals[J]. Journal of Chemical Engineering of japan,2010.74(3):102-108
    [3] ABISHEVA Z S, ZAGORODNYAYA A N, BOCHEVEKAYA Y G, et al. Recovery of gallium from industrial products of chemical and metallurgical industries[C]//XXVI International Mineral Processing Congress (IMPC)Proceedings, New Delphi, India,2012:48-60
    [4] FRENZEL M, KETRIS M P, SEIFERT T, et al. On the current and future availability of gallium[J]. Resources Policy,2016,47:38-50
    [5] ZHAO Z, YANG Y, XIAO Y, et al. Recovery of gallium from Bayer liquor:A review[J]. Hydrometallurgy,2012,125:115-124
    [6] 路坊海, 肖唐付, 袁艺,等. 贵州省铝工业现状及未来发展方向[J]. 轻金属,2016(4):1-4
    [7] 叶霖, 潘自平, 程曾涛. 贵州铝土矿中伴生元素综合利用前景[J]. 矿物学报,2007,27(3):388-392
    [8] 肖金凯,雷剑泉.黔中铝土矿及其赤泥中钪的某些特征[J].矿物学报,1994,14(4):388-393
    [9] 肖金凯,雷剑泉.贵州铝厂赤泥中钪和稀土[J].科学通报,1994,39(13):1248
    [10] ABDULVALIYEV R A, AKCIL A, GLADYSHEV S V, et al. Gallium and vanadium extraction from red mud of Turkish alumina refinery plant:Hydrogarnet process[J]. Hydrometallurgy,2015,157:1-20
    [11] 路坊海,李安静,王家伟,等. 赤泥中镓铝在常压酸法浸出过程中的行为[J]. 有色金属(冶炼部分),2016,(12):27-31
    [12] 翟秀静,吕子剑. 镓冶金[M]. 北京:冶金工业出版社,2010:42
    [13] FANG Z, GESSER H D. Recovery of gallium from coal fly ash[J]. Hydrometallurgy,1996,41(2/3):187-200
    [14] SANCHO J P, AYALA J, GARCÍA M P, et al. Leaching behaviour of a Bayer electrofilter fines in sulphuric acid[J]. Hydrometallurgy,2009,96(1):35-41
    [15] DAVRIS P, BALOMENOS E, PANIAS D, et al. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid[J]. Hydrometallurgy,2016,164:125-135
    [16] RAUL P K, DEVI R R, UMLONG I M, et al. Removal of fluoride from water using iron oxide-hydroxide nanoparticles[J]. Journal of nanoscience and nanotechnology,2012,12(5):3922-3930
    [17] LIANG W, COUPERTHWAITE S J, KAUR G, et al. Effect of strong acids on red mud structural and fluoride adsorption properties[J]. Journal of colloid and interface science,2014,423:158-165
    [18] ÇENGELO ĞLU Y, KIR E, ERSÖZ M. Removal of fluoride from aqueous solution by using red mud[J]. Separation and Purification Technology,2002,28(1):81-86
    [19] TOR A. Removal of fluoride from an aqueous solution by using montmorillonite[J]. Desalination,2006,201(1/2/3):267-276
    [20] TOR A, DANAOGLU N, ARSLAN G, et al. Removal of fluoride from water by using granular red mud:batch and column studies[J]. Journal of hazardous materials,2009,164(1):271-278
    [21] CHAUDHARY M, BHATTACHARYA P, MAITI A. Synthesis of iron oxyhydroxide nanoparticles and its application for fluoride removal from water[J]. Journal of Environmental Chemical Engineering,2016,4(4):4897-4903
    [22] 杨利锦, 郭华明. 活化赤泥的除氟性能[J]. 环境工程学报,2012,6(11):3981-3988
  • 加载中
计量
  • 文章访问数:  2504
  • HTML全文浏览数:  2151
  • PDF下载数:  537
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-06-26
  • 刊出日期:  2017-12-07
路坊海, 肖唐付, 梁杰, 伍玉娇, 黄芳, 龙琼, 肖立华, 刘冰, 周登凤, 曾英. 拜耳赤泥中镓的酸法浸出及残渣的除氟[J]. 环境工程学报, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
引用本文: 路坊海, 肖唐付, 梁杰, 伍玉娇, 黄芳, 龙琼, 肖立华, 刘冰, 周登凤, 曾英. 拜耳赤泥中镓的酸法浸出及残渣的除氟[J]. 环境工程学报, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
LU Fanghai, XIAO Tangfu, LIANG Jie, WU Yujiao, HUANG Fang, LONG Qiong, XIAO Lihua, LIU Bing, ZHOU Dengfeng, ZENG Ying. Leaching gallium from Bayer red mud by acid process and removing fluoride from solution with leaching residues[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147
Citation: LU Fanghai, XIAO Tangfu, LIANG Jie, WU Yujiao, HUANG Fang, LONG Qiong, XIAO Lihua, LIU Bing, ZHOU Dengfeng, ZENG Ying. Leaching gallium from Bayer red mud by acid process and removing fluoride from solution with leaching residues[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6415-6420. doi: 10.12030/j.cjee.201702147

拜耳赤泥中镓的酸法浸出及残渣的除氟

  • 1.  贵州理工学院材料与冶金工程学院, 贵阳 550003
  • 2.  中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳 550081
  • 3.  中国科学院大学, 北京 100049
基金项目:

国家自然科学基金资助项目(551664010,51664009,51664008)

贵州省科学技术基金项目(黔科合J字[2014]2083号,黔科合LH字[2016]7095)

摘要: 贵州铝土矿资源普遍富含镓元素,拜耳法工艺中,约70%的镓随氧化铝同时溶出,其余30%残存于赤泥中未回收直接外排,造成镓资源的严重浪费。采用酸法工艺浸出拜耳赤泥中镓金属,设计4因素3水平L9(34)正交实验,考察盐酸添加量、浸出温度、浸出时间和液固比对镓浸出效果的交互影响规律,并测试了浸出残渣对含氟水处理性能。结果表明:影响镓浸出率因素的主次顺序依次为盐酸添加量、浸出温度、液固比和浸出时间;最适宜浸出条件为盐酸过量系数1.2,浸出温度70℃,浸出时间3 h,液固比8 mL·g-1;该条件下,镓的浸出率为94.92%,浸出溶液含Ga 3.91 mg·L-1;除氟实验得出最佳除氟条件为,残渣添加量25 g·L-1,pH=4.7,接触时间6 h,旋转速率200 r·min-1;室温下进行3组平行实验,平均除氟率为57.54%,表明浸出残渣具有一定的除氟性能。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回