-
大气细颗粒物 (PM2.5)是影响大气环境质量的重要污染物之一,它可降低太阳直接辐射和大气能见度,并影响人体健康[1]。碳质气溶胶是PM2.5的主要组成成分,约占PM2.5质量浓度的30%~50%[2-5]。碳质气溶胶根据热学性质可以分为有机碳 (organic carbon,OC) 和元素碳 (element carbon, EC),根据其光学性质又可将其分为有机碳和黑碳 (black carbon, BC)。元素碳主要来源于人为排放,包括机动车排放、工业排放和人为燃煤取暖等化石燃料燃烧以及秸秆、木材等生物质燃烧[6-7]。同时,元素碳作为重要的短期气候污染物,其直接辐射强迫效应仅小于CO2 [8]。有机碳主要包括一次排放有机碳 (primary organic carbon, POC) 以及挥发性有机物通过光化学反应或者液相反应生成的二次有机碳 (secondary organic carbon, SOC)[5, 9-11],这种分类可以更好地探寻OC的形成机制[12]。而有研究[9]发现,部分OC也在可见光波段存在明显的吸光效应,主要在紫外波段吸光,并被称为棕碳 (brown carbon, BrC),该物质也会影响大气辐射效应。除了辐射强迫效应外,OC和EC均对人类健康有害,黑碳本身就是诱导人体发生氧化应激、诱发炎症因子分泌和炎症反应的物质,对人体健康有着严重影响[13]。OC中的多环芳烃、二恶英等物质也会提高致癌风险[14-15]。
目前,OC/EC主要的测量方法为热光反射法 (IMPROVE TOR) 和热光透射法 (NIOSH TOT)[16-17],代表仪器包括DRI-2001型有机碳无机碳分析仪和SUNSET有机碳无机碳分析仪。但上述2种方法对于OC/EC的切割点均受制于分析协议的影响,不同的分析协议测量得到的OC/EC分割点及质量浓度均存在一定的偏差[18]。到目前为止,OC/EC测量方法依旧存在一定争议。CHENG等[19]通过对比IMPROVE与NIOSH协议的结果发现,不同分析协议之间的EC差异可以达到80%,并且认为这种差异是来自于SOA的影响。WU等[20]认为,热光法分析协议的差异主要来自于惰性环境最后燃烧阶段温度的差异以及切割点的不同,这种差异受制于样品中的金属化合物。KHAN等[21]也发现,较多负载物的条件下会导致透射和反射能力下降并导致测量误差。同时,热光法仪器较为昂贵且需要维持惰性气体状态,使得其使用场景被限制在实验室或是固定台站。除热光分析法外,还可以利用单颗粒质谱监测系统 (SPAMS)对多种气溶胶类型的OC/EC进行监测,但在每秒测量的单颗粒数目过高时会出现较大误差,因而对不同化学物质的检测敏感度不同;在使用SPAMS测量OC/EC时,主要测量其数浓度,但由于OC和EC气溶胶形态大小的不同,导致数浓度与质量浓度间存在一定差距[22-24]。张遥等[25]利用SUNSET与SPAMS进行了对比测量,发现对于同种污染物,SUNSET测得的质量浓度与SPAMS测得的数浓度之间相关性较差。虽然SPAMS目前已经配备在交通工具 (如:汽车、火车等)里,可用于移动测量和偏远地区监测,但通常只被用于定性分析气溶胶来源。而多波段光吸收法测量BC的方法一直被运用在大气环境监测中[26-27]。近年来,随着研究的深入,环境科学中的EC与大气科学中的BC的结合越来越紧密,也出现了新的碳质气溶胶测量方法[28]。因此,碳气溶胶组分在线分析系统 (CASS) 开始应用于环境监测。该系统由AE33黑碳仪与TCA08总碳分析仪组成,2个仪器分别测量BC和TC的技术已经十分成熟[26, 29-30],但是,结合计算OC/EC的方法目前使用较少[28, 31]。RIGLER[28]在2019年提出了连用TC-BC的方法测量OC/EC,并在2020年将TCA08和AE33黑碳仪连接成集成式OC/EC测量仪器。倪登峰等[32]在济南市使用SUSNET与CASS进行了对比观测,确定在济南市BC/EC系数为0.9437,并认为CASS很好地避免了VOCs的影响,使测量更加稳定。此外,由于CASS系统的光学模块是由AE33组成的,因此AE33溯源功能也保留在CASS系统中。利用SANDRADEWI等[33-34]开发并被广泛应用的黑碳仪模型,可以区分EC中生物质燃烧和化石燃料燃烧的来源,也可以分析BrC的吸光性[35-36]。
本研究利用CASS系统与在线SUNSET OC/EC分析仪在南京市同一地点、同一时段对碳质气溶胶组分进行平行在线观测并对2种测量方法进行对比评估,利用CASS系统分析采样期间南京市北部郊区OC、EC、SOC的质量浓度以及BrC吸光特征和EC来源,探究CASS系统在测量大气中碳质气溶胶方面的准确性和实用性,以期为CASS系统在大气污染监测中的实际应用提供参考。
新型碳质气溶胶(OC/EC)观测方法的应用效果分析
Application effect analysis of new carbonaceous aerosol (OC/EC) observation method
-
摘要: 为探究新型碳气溶胶组分在线分析系统(CASS)对大气中碳质气溶胶测量的准确性和实用性,将CASS系统与在线SUNSET OC/EC分析仪测量结果进行了对比,并应用CASS系统对南京2020年秋季大气碳质气溶胶的组分进行了分析。结果表明:在南京北部郊区秋季用CASS系统测量,其黑碳 (BC) 与元素碳 (EC) 的计算系数为0.78;经校正后的CASS系统所测得的总碳 (TC)、有机碳 (OC) 和EC结果与在线SUNSET OC/EC分析仪的测量结果具有较好的一致性,斜率分别为1.04 (R2=0.9)、0.87 (R2=0.92)、1.05 (R2=0.92),2台仪器的各个碳质组分的测量误差在10%以内;OC和EC分别占PM2.5的32%和10%左右,二次有机碳 (SOC) 占OC的38%左右;EC主要来源为化石燃料燃烧 (占比约80%);棕碳 (BrC) 在370 nm处的光吸收占比为 21.18%±6.91%,一次排放污染物居多。综上所述,经过校正后的CASS系统与传统的热光法SUNSET OC/EC分析仪相比,两者的测量结果较为一致;CASS可以分析EC的来源,也可以计算棕碳的吸光占比;CASS具有独特的载气功能以及测量方法,维护和移动观测更加方便,且更加适合于偏远地区。本研究成果可为CASS系统在大气污染监测中的推广应用提供参考。
-
关键词:
- 碳质气溶胶 /
- 碳气溶胶组分在线分析系统(CASS) /
- 热光法 /
- SUNSET OC/EC分析仪 /
- 对比分析
Abstract: In order to explore the accuracy and practicability of measuring carbonaceous aerosols in the atmosphere by the new carbonaceous aerosol speciation system (CASS), a contrastive study of measuring results between CASS system and the online SUNSET OC/EC analyzer was conducted, and the former was used to analyze carbonaceous aerosols in Nanjing in autumn of 2020. The results showed that the calculation coefficient of internal black carbon (BC) and elemental carbon (EC) was 0.78. The total carbon (TC), organic carbon (OC) and EC determined by the calibrated CASS system were in good agreement with those by the online SUNSET OC/EC analyzer with respective slope of 1.04 (R2=0.9), 0.87 (R2=0.92), and 1.05 (R2=0.92), and the measurement errors of each carbonaceous component determined by the two instruments were within 10%. In addition, OC and EC accounted for about 32% and 10% of PM2.5, respectively, and secondary organic carbon (SOC) accounted for about 38% of OC. The main source of EC was fossil fuel combustion with a ratio of about 80%. The ratio of light absorption by brown carbon (BrC) at 370 nm was (21.18±6.91)%, which was mainly the primary emission pollutant. Overall, the measurement results of the calibrated CASS were consistent with those of the traditional thermal-optical SUNSET OC/EC analyzer, and the former could analyze the source of EC and the light absorption ratio of brown carbon at 370nm. In addition, the unique gas-carrying function and measurement method in CASS made it more convenient for maintenance and mobile observation, as well as more suitable for remote areas. The research results can provide a reference for the popularization and application of CASS in air pollution monitoring. -
表 1 CASS与SUNSET的参数对比
Table 1. Comparison of CASS and SUNSET parameters
仪器 载气 检测器 分析协议 采样流量/
(L·min−1)采样膜
面积/cm2分析流量/
(mL·min−1)采样
时间/min分析
时间/min计算方法 CASS 空气 NDIR IMPROVE_A 16.4 4.9 500 60 20 COC =CTC−CEC SUNSET He 与He/O2 NDIR NOISH5040 8 2.27 70 45 15 CTC = COC+CEC 注:CTC为SUNSET通过计算得到总碳的质量浓度;COC为SUNSET在惰性气体下测得有机碳的质量浓度;CEC为SUNSET在非惰性气体下测得元素碳的质量浓度。 -
[1] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371 [2] HE Q, GUO W, ZHANG G, et al. Characteristics and seasonal variations of carbonaceous species in PM2.5 in Taiyuan, China[J]. Atmosphere, 2015, 6(6): 850-862. doi: 10.3390/atmos6060850 [3] FENG Y, CHEN Y, GUO H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmospheric Research, 2009, 92(4): 434-442. doi: 10.1016/j.atmosres.2009.01.003 [4] NIU Z, ZHANG F, CHEN J, et al. Carbonaceous species in PM2.5 in the coastal urban agglomeration in the Western Taiwan Strait Region, China[J]. Atmospheric Research, 2013, 122: 102-110. doi: 10.1016/j.atmosres.2012.11.002 [5] SUDHEER A K, ASLAM M Y, UPADHYAY M, et al. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics[J]. Atmospheric Research, 2016, 178-179: 268-278. doi: 10.1016/j.atmosres.2016.03.026 [6] 曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析[J]. 环境化学, 2020, 39(11): 3072-3082. [7] RICHMOND-BRYANT J, SAGANICH C, BUKIEWICZ L, et al. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals[J]. Science of the Total Environment, 2009, 407(10): 3357-3364. doi: 10.1016/j.scitotenv.2009.01.046 [8] LIAO H, CHANG W. Integrated assessment of air quality and climate change for policy-making: Highlights of IPCC AR5 and research challenges[J]. National Science Review, 2014, 1(2): 176-179. doi: 10.1093/nsr/nwu005 [9] LIU D, VONWILLER M, LI J, et al. Fossil and non-fossil fuel sources of organic and elemental carbonaceous aerosol in Beijing, Shanghai, and Guangzhou: Seasonal carbon source variation[J]. Aerosol and Air Quality Research, 2020, 20(11): 2495-2506. doi: 10.4209/aaqr.2019.12.0642 [10] 牟臻, 陈庆彩, 王羽琴, 等. 西安市PM2.5中碳质气溶胶污染特征[J]. 环境科学, 2019, 40(4): 1529-1536. [11] 叶招莲, 刘佳澍, 李清, 等. 常州夏秋季PM2.5中碳质气溶胶特征及来源[J]. 环境科学, 2017, 38(11): 4469-4477. [12] WEBER R J, SULLIVAN A P, PELTIER R E, et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13): 1-7. [13] PUN V C, HO K F. Blood pressure and pulmonary health effects of ozone and black carbon exposure in young adult runners[J]. Science of the Total Environment, 2019, 657: 1-6. doi: 10.1016/j.scitotenv.2018.11.465 [14] PEHNEC G, JAKOVLJEVIĆ I. Carcinogenic potency of airborne polycyclic aromatic hydrocarbons in relation to the particle fraction size[J]. International Journal of Environmental Research and Public Health, 2018, 15(11): 2485. doi: 10.3390/ijerph15112485 [15] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [16] FUNG K, CHOW J C, WATSON J G. Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method[J]. Journal of the Air & Waste Management Association, 2002, 52(11): 1333-1341. [17] BAE M S, SCHAUER J J, DEMINTER J T, et al. Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method[J]. Atmospheric Environment, 2004, 38(18): 2885-2893. doi: 10.1016/j.atmosenv.2004.02.027 [18] PARK S S, BAE M S, SCHAUER J J, et al. Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia[J]. Atmospheric Environment, 2005, 39(28): 5101-5112. doi: 10.1016/j.atmosenv.2005.05.016 [19] CHENG Y, ZHENG M, HE K B, et al. Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States[J]. Atmospheric Environment, 2011, 45(11): 1913-1918. doi: 10.1016/j.atmosenv.2011.01.036 [20] WU C, HUANG X H H, NG W M, et al. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion[J]. Atmospheric Measurement Techniques, 2016, 9(9): 4547-4560. doi: 10.5194/amt-9-4547-2016 [21] KHAN B, HAYS M D, GERON C, et al. Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis[J]. Aerosol Science and Technology, 2012, 46(2): 127-137. doi: 10.1080/02786826.2011.609194 [22] BHAVE P V, KLEEMAN M J, ALLEN J O, et al. Evaluation of an air quality model for the size and composition of source-oriented particle classes[J]. Environmental Science & Technology, 2002, 36(10): 2154-2163. [23] ALLEN J O, BHAVE P V, WHITEAKER J R, et al. Instrument busy time and mass measurement using aerosol time-of-flight mass spectrometry[J]. Aerosol Science and Technology, 2006, 40(8): 615-626. doi: 10.1080/02786820600754623 [24] LI L, HUANG Z, DONG J, et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles[J]. International Journal of Mass Spectrometry, 2011, 303(2): 118-124. [25] 张遥, 成春雷, 王在华, 等. 基于单颗粒气溶胶质谱仪的气溶胶化学组分的半定量研究[J]. 中山大学学报(自然科学版), 2022, 17(13): 1-3. [26] DRINOVEC L, MOČNIK G, ZOTTER P, et al. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation[J]. Atmospheric Measurement Techniques, 2015, 8(5): 1965-1979. doi: 10.5194/amt-8-1965-2015 [27] ELEFTHERIADIS K, VRATOLIS S, NYEKI S. Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007[J]. Geophysical Research Letters, 2009, 36(2): 1-9. [28] RIGLER M, DRINOVEC L, LAVRIČ G, et al. The new instrument using a TC-BC (total carbon-black carbon) method for the online measurement of carbonaceous aerosols[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4333-4351. doi: 10.5194/amt-13-4333-2020 [29] RAJESH T A, RAMACHANDRAN S. Black carbon aerosol mass concentration, absorption and single scattering albedo from single and dual spot aethalometers: Radiative implications[J]. Journal of Aerosol Science, 2018, 119: 77-90. doi: 10.1016/j.jaerosci.2018.02.001 [30] YUS-DÍEZ J, BERNARDONI V, MOČNIK G, et al. Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: A multi-instrumental approach[J]. Atmospheric Measurement Techniques, 2021, 14(10): 6335-6355. doi: 10.5194/amt-14-6335-2021 [31] RIGLER M, DRINOVEC L, FAVEZ O, et al. High time resolution measurement and source apportionment of TC, BC and OC, EC[C]//12 International Conference on Carbonaceous Particles in the Atmosphere (ICCPA). Vienne, Austria, 2019: 35. [32] 倪登峰, 林晶晶, 高健, 等. 碳质气溶胶(OC/EC)新型观测方法对比分析[J]. 中国环境科学, 2020, 40(12): 5191-5197. [33] SANDRADEWI J, PRÉVÔT A S H, SZIDAT S, et al. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter[J]. Environmental Science & Technology, 2008, 42(9): 3316-3323. [34] SANDRADEWI J, PRÉVÔT A S H, WEINGARTNER E, et al. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer[J]. Atmospheric Environment, 2008, 42(1): 101-112. doi: 10.1016/j.atmosenv.2007.09.034 [35] WU C, WU D, YU J Z. Quantifying black carbon light absorption enhancement with a novel statistical approach[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 289-309. doi: 10.5194/acp-18-289-2018 [36] WANG Q, YE J, WANG Y, et al. Wintertime optical properties of primary and secondary brown carbon at a regional site in the North China Plain[J]. Environmental Science & Technology, 2019, 53(21): 12389-12397. [37] PAVLOVIC J, KINSEY J S, HAYS M D. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer[J]. Atmospheric Measurement Techniques, 2014, 7(9): 2829-2838. doi: 10.5194/amt-7-2829-2014 [38] MILLET D B, DONAHUE N M, PANDIS S N, et al. Atmospheric volatile organic compound measurements during the pittsburgh air quality study: Results, interpretation, and quantification of primary and secondary contributions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D7): 1-17. [39] ZACCANTI G, BRUSCAGLIONI P. Deviation from the lambert-beer law in the transmittance of a light beam through diffusing media: Experimental results[J]. Journal of Modern Optics, 1988, 35(2): 229-242. doi: 10.1080/09500348814550281 [40] BROWN S, MINOR H, O’BRIEN T, et al. Review of sunset OC/EC instrument measurements during the EPA’s sunset carbon evaluation project[J]. Atmosphere, 2019, 10(5): 287. doi: 10.3390/atmos10050287 [41] 谢锋. 黑碳气溶胶的测量与溯源参数优化及其应用 [D]. 南京: 南京信息工程大学, 2021. [42] 肖思晗, 于兴娜, 朱彬, 等. 南京北郊黑碳气溶胶的来源解析[J]. 环境科学, 2018, 39(1): 9-17. [43] 鲍孟盈. 南京北郊工业区碳质气溶胶污染特征及生物质燃烧的影响研究[D]. 南京: 南京信息工程大学, 2017. [44] 沈嵩, 刘蕾, 温维, 等. 北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J]. 环境工程, 2022, 40(2): 71-80. [45] 林宇, 姬亚芹, 林孜, 等. 天津市夏季PM2.5中碳组分时空变化特征及来源解析[J]. 环境化学, 2022, 41(1): 104-112. [46] 谢锋, 林煜棋, 宋文怀, 等. 南京北郊黑碳气溶胶分布特征及来源[J]. 环境科学, 2020, 41(10): 4392-4401. [47] 肖思晗. 南京北郊黑碳气溶胶的污染特征及其来源解析[D]. 南京: 南京信息工程大学, 2018. [48] LIU Y, YAN C, ZHENG M. Source apportionment of black carbon during winter in Beijing[J]. Science of the Total Environment, 2018, 618(1): 531-541. [49] 吕任生, 贾尔恒·阿哈提, 赵晨曦, 等. 乌鲁木齐市城区机动车大气污染物排放特征[J]. 环境科学学报, 2015, 35(12): 4061-4070. [50] 宋晓伟, 郝永佩, 朱晓东. 长三角城市群机动车污染物排放清单建立及特征研究[J]. 环境科学学报, 2020, 40(1): 90-101. [51] 徐足飞, 曹芳, 高嵩, 等. 南京北郊秋季PM2.5碳质组分污染特征及来源分析[J]. 环境科学, 2018, 39(7): 3033-3041. [52] LIAKAKOU E, KASKAOUTIS D, GRIVAS G, et al. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)[J]. Science of the Total Environment, 2020, 708(1): 135019. [53] 关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, 39(10): 2812-2822. [54] RETAMA A, RAMOS-CERÓN M, RIVERA-HERNÁNDEZ O, et al. Aerosol optical properties and brown carbon in Mexico City[J]. Environmental Science:Atmospheres, 2022, 17(1): 1-23.