-
随着国家对环境保护的不断重视以及人民群众对碧水蓝天、美好环境热切需求的不断增长,以流域治理、湿地建设、“碧水绕城” “美丽乡村”等为代表的水环境治理项目越来越多[1]。城市化水平较高的地区,人们的生产生活活动对城市湖泊水体的影响更为突出,尤其是作为河流蓄泄的枢纽湖泊(如嘉兴南湖),其水环境治理一直是生态环境领域的难点。
国内外比较成熟的湖泊生态修复理论主要包括多稳态理论、营养盐浓度限制理论和生物操纵理论[2]。多稳态理论指在相同的外部环境条件下,浅水型湖泊可能处在“草型清水态”和“藻型浊水态”2种完全不同的状态[3],2种状态之间存在着临界阈值[4-5];营养盐浓度限制理论强调营养盐对生物群落的限制与驱动,是湖泊多稳态保持和转化的动力[2];生物操纵理论通过生物调控治理藻类水华[6]而应用在富营养化湖泊的治理中[7]。柯杰等[8]认为湖泊湿地修复技术主要包括物理技术、生物技术和化学技术。物理技术中的环保疏浚是采取人工、机械的措施适当去除水体中的污染底泥,以降低底泥中污染物的释放通量和生态风险,并对疏浚后的污染底泥进行安全处理处置的技术,是河流、湖泊(水库) 水污染治理的重要技术之一[9]。南京玄武湖采用的围堰分区干式法[10-11],西安兴庆湖采用的高压水枪水力冲挖方式[12],杭州西湖采用的环保绞吸式挖泥船疏浚方式[13]等均属于比较常见的环保疏浚技术。但环保疏浚缺乏与生态修复技术之间的衔接,如疏浚底泥的二次利用、无害化处置通常缺乏考虑[14]。其他物理技术包括通过机械、设备对城市湖泊湿地进行换水、补水,实现水量稀释,可以快速降低营养盐浓度[8],比如常用的混凝-沉淀、磁混凝技术、超磁分离一体化工艺等。其中超磁分离一体化工艺已在巢湖塘西河[15]生态补水、吴江同里古镇[16]景观补水、北京总装航天城人工湖[17]活水循环等水环境项目中进行广泛应用。在生物技术方面,以沉水植物为主或结合其他修复技术的原位生态修复已十分普遍,在太湖[18-19]、上海临港滴水湖[20]、杭州西湖[21]、昆明滇池草海[22]等均有广泛应用。化学技术主要是指利用药剂、化学工艺对湖泊进行治理,在城市湖泊水体生态修复方面应用较少。
与传统城市湖泊相比,浙江嘉兴南湖作为嘉兴主要河流的交汇处,其水体库容小、水力停留时间短,形式上更接近“河流型湖泊”。南湖作为5A级景区,往来游客众多,游船航次频繁,关注度极高,生态修复对水体的扰动相对更为受限。本研究以嘉兴南湖生态环境修复工程(一期)项目为例,基于南湖水环境调查的已有成果[23-26],对南湖水质问题和水体浑浊原因进行分析,提出嘉兴南湖生态系统构建的整理思路和关键技术,并对工程实施后的效果进行评价,以期为平原河网水系、开放性水域、高浊度水体的城市湖泊治理提供借鉴和参考。
嘉兴市南湖生态环境修复工程的系统构建与效果评价
System construction and effect evaluation of Nanhu lake ecological environment restoration project in Jiaxing, China
-
摘要: 为改善嘉兴南湖水体质量,恢复湖区生态系统,实现南湖水质、生态及景观的全面提升,在分析南湖水质问题和水体浑浊成因的基础上,采取外源污染控制、内源污染清除和原位生态修复的方法,构建了南湖水下生态系统,并对南湖的生态修复效果进行评价分析。结果表明:南湖主要水质指标(COD、NH3-N、TP)基本达到地表水Ⅲ类(湖泊标准),湖区大部分区域水体透明度达到80 cm以上,水体颜色由黄色变为浅绿色;超磁分离一体化设备可以显著去除水体中的TP(去除率为92.61%),对NH3-N(去除率为37.94%)也有一定的去除作用,但是对TN、COD等的去除不明显;以“沉水植物”为主体的水下森林生态系统对悬浮型颗粒物具有明显的去除作用,沉水植物种植区域悬浮物下降值为42.09%;环保绞吸疏浚与土工管袋干化相结合的技术,减少了疏浚过程中的底泥再悬浮,土工管袋干化后的尾水采用超磁分离一体化设备二次处理,悬浮物SS指标均不超过4 mg·L−1,实现了疏浚土尾水的达标排放。嘉兴南湖生态环境修复工程(一期)项目的成功实施,验证了超磁分离一体化工艺、环保绞吸疏浚与土工管袋干化、水上抛投沉水植物种植等技术的有效性。本研究成果可为平原河网水系、开放性水域、高浊度水体的城市湖泊生态修复提供借鉴和参考。Abstract: In order to improve the water quality of Nanhu lake in Jiaxing, restore the ecosystem of the lake area and realize the overall improvement of water quality, ecology and landscape of the lake, based on the causes analysis of water quality problems and water turbidity, the underwater ecosystem of Nanhu lake was constructed by using external pollution control, internal pollution removal and in-situ ecological restoration, and the corresponding ecological restoration effect was also evaluated and analyzed. The results show that the main water quality indexes (COD, NH3-N, TP) of Nanhu lake basically met the class III (Lake standard) of surface water, the transparency of water body in most areas of the lake area reached more than 80 cm, and the color of water body changed from yellow to light green. The integrated equipment of super magnetic separation could significantly remove TP with the removal rate of 92.61%, and could also remove NH3-N with the removal rate of 37.94%, but could not obviously remove TN and COD. The underwater forest ecosystem with "submerged plants" as the main body had an obvious removal effect on suspended particulate matter. The decrease rate of suspended particulate matter in submerged plant planting area was 42.09%. The combination of environmental protection cutter suction dredging and geotube bag drying technology could reduce the resuspension of sediment in the dredging process. The tail water after geotube bag drying was treated twice by the integrated equipment of super magnetic separation, and the SS index of suspended solids was no higher than 4 mg·L−1, realizing the standard discharge of tail water from dredged soil. The successful implementation of Jiaxing Nanhu ecological environment restoration project (phase I) verified the effectiveness of the integrated process of super magnetic separation, environmental protection wringing and suction dredging and geotube bag drying, and the throwing-planting of submerged plants over water. The research results can provide a reference for the ecological restoration of water system of river network in plain, open water region and urban lake with high turbidity water.
-
表 1 南湖与国内其他湖泊水体中的TSS质量浓度及其均值
Table 1. TSS mass concentration and its mean value in Nanhu Lake and other domestic lakes
湖泊名称 质量浓度/( mg·L−1) 均值/( mg·L−1) 东湖 13. 80~23. 76 18. 72 蠡湖 1. 00~78. 00 17. 35 鄱阳湖 5. 00~72. 00 23. 87 梁子湖 2. 83~26. 85 12. 41 洪湖 2. 24~25. 66 10. 98 太湖 11. 08~85. 40 34. 31 巢湖 17. 80~67. 53 42. 76 南湖 29. 20~75. 20 38. 95 表 2 南湖水质监测数据平均值
Table 2. Average value of water quality monitoring data of Nanhu lake
取样点位 浊度/NTU COD/(mg·L−1) NH3-N/(mg·L−1) TP/(mg·L−1) 叶绿素a/(μg·L−1) SS/(mg·L−1) TN/(mg·L−1) 1号点 3 14 0.301 0.011 8 13 2.69 2号点 3 13 0.337 0.012 8 13 2.74 3号点 3 16 0.318 0.011 12 12 2.55 4号点 3 17 0.271 0.018 9 16 2.71 5号点 4 18 0.197 0.016 11 13 2.47 6号点 4 13 0.082 0.017 16 14 1.84 7号点 4 14 0.056 0.017 11 14 1.75 8号点 7 18 0.126 0.022 18 24 2.43 9号点 3 15 0.060 0.016 16 14 2.12 10号点 3 13 0.097 0.014 15 14 2.20 11号点 10 16 0.110 0.038 20 26 2.54 12号点 11 16 0.110 0.039 21 29 2.54 13号点 8 13 0.111 0.026 32 19 2.44 14号点 14 18 0.141 0.060 13 32 2.59 对照点A 16 14 0.485 0.149 17 28 2.48 对照点B 22 17 0.292 0.161 10 42 2.98 表 3 疏浚土干化尾水水质监测数据
Table 3. Monitoring indicators of tail water quality from dredged soil drying
日期 COD/(mg·L−1) NH3-N /(mg·L−1) SS/(mg·L−1) pH 磷酸盐/(mg·L−1) 2021-01-01 21 1.93 <4 7.56 0.02 2021-01-07 17 1.84 <4 7.47 0.04 2021-01-14 14 1.92 <4 7.39 0.05 2021-01-21 20 1.84 <4 7.44 0.04 -
[1] 魏志杰. 考核付费模式下的水环境治理EPC项目投标风险管理研究[D]. 杭州: 浙江大学, 2022. [2] 杨程, 马剑敏. 城市湖泊生态修复及水生植物群落构建研究进展[J]. 长江科学院院报, 2014, 31(7): 13-20. doi: 10.3969/j.issn.1001-5485.2014.07.003 [3] 李文朝. 浅水湖泊生态系统的多稳态理论及其应用[J]. 湖泊科学, 1997, 9(2): 97-104. doi: 10.18307/1997.0201 [4] 秦伯强. 湖泊生态恢复的基本原理与实现[J]. 生态学报, 2007, 17(11): 4848-4858. doi: 10.3321/j.issn:1000-0933.2007.11.055 [5] HOBBS R J, NORTON D A. Towards a conceptual framework for restoration[J]. Ecology, 1996, 4(2): 93-110. [6] 此里能布, 毛建忠, 黄少峰. 经典与非经典生物操纵理论及其应用[J]. 生态科学, 2012, 31(1): 87-91. [7] 刘春光, 邱金泉, 王雯, 等. 富营养化湖泊治理中的生物操纵理论[J]. 农业环境科学学报, 2004, 23(1): 198-201. doi: 10.3321/j.issn:1672-2043.2004.01.048 [8] 柯杰, 卢进登, 朱书景. 城市湖泊湿地修复技术研究进展[C]//黄河水利委员会黄河水利科学研究院,北京大学建筑与景观设计学院,中国水利水电科学研究院水环境研究所, 等. 践行绿色发展理念建设美丽中国: 2018年第五届中国(国际)水生态安全战略论坛论文集, 2018: 161-165. [9] 姜霞, 王书航, 张晴波, 等. 污染底泥环保疏浚工程的理念应用条件关键问题[J]. 环境科学研究, 2017, 30(10): 1497-1504. [10] 范成新, 张路, 王建军, 等. 湖泊底泥疏浚对内源释放影响的过程与机理[J]. 科学通报, 2004, 55(15): 1523-1528. doi: 10.3321/j.issn:0023-074X.2004.15.010 [11] 施永富. 南京玄武湖清淤工程设计方案的革新[J]. 中国西部科技, 2005(6): 67-68. [12] 范成新, 钟继承, 张路, 等. 湖泊底泥环保疏浚决策研究进展与展望[J]. 湖泊科学, 2020, 32(5): 1254-1277. doi: 10.18307/2020.0506 [13] 吴芝瑛, 虞左明, 盛海燕, 等. 杭州西湖底泥疏浚工程的生态效应[J]. 湖泊科学, 2008, 20(3): 277-284. doi: 10.3321/j.issn:1003-5427.2008.03.003 [14] 范成新, 陈开宁, 张路, 等. 湖泊污染底泥治理修复实践: 以太湖为例[J]. 科学, 2021, 73(3): 13-16. [15] 徐超. 超磁分离技术在生态补水工程中的应用[J]. 环境与发展, 2020, 32(2): 67-68. [16] 王哲晓, 吕志国, 张勤. 超磁分离水体净化技术在水环境领域的典型应用[J]. 中国给水排水, 2016, 32(12): 34-37. [17] 张勤, 王哲晓, 李灿. 超磁分离水体净化技术在黑臭水体治理中的应用案例[J]. 环境工程学报, 2021, 15(9): 3128-3135. [18] 陈祈春, 李正魁, 王易超, 等. 沉水植物床-固定化微生物技术在水源地修复中的应用研究[J]. 环境科学, 2012, 33(1): 83-87. [19] 汤鑫, 曹特, 倪乐意, 等. 改性粘土辅助沉水植物修复技术维持清水稳态的原位研究[J]. 湖泊科学, 2013, 25(1): 16-22. doi: 10.3969/j.issn.1003-5427.2013.01.003 [20] 霍元子, 何文辉, 罗坤, 等. 大型溞引导的沉水植被生态修复对滴水湖水质的净化效果[J]. 应用生态学报, 2010, 21(2): 495-499. [21] 李琳琳, 汤祥明, 高光, 等. 沉水植物生态修复对西湖细菌多样性及群落结构的影响[J]. 湖泊科学, 2013, 25(2): 188-198. doi: 10.3969/j.issn.1003-5427.2013.02.003 [22] 王琦, 刘高慧, 肖能文, 等. 不同生物联合对滇池草海水质的净化作用[J]. 水资源保护, 2020, 36(3): 89-97. doi: 10.3880/j.issn.1004-6933.2020.03.015 [23] 车霏霏, 陈俊伊, 王书航, 等. 南湖水系水-沉积物磷时空分布、影响因素及控制对策[J]. 环境工程技术学报, 2020, 10(6): 928-935. doi: 10.12153/j.issn.1674-991X.20200068 [24] 王书航, 郑朔方, 蔡青, 等. 南湖及周边水体中氮的时空分布、影响因素及控制对策[J]. 环境工程技术学报, 2020, 10(6): 920-927. doi: 10.12153/j.issn.1674-991X.20200070 [25] 赵丽, 蔚静雯, 邢健宇, 等. 南湖水体中悬浮物的时空分布特征及环境效应[J]. 环境工程技术学报, 2020, 10(6): 905-911. doi: 10.12153/j.issn.1674-991X.20200067 [26] 陈俊伊, 王书航, 郑朔方, 等. 南湖水系水体透明度时空分布、影响因素及控制对策[J]. 环境工程技术学报, 2020, 10(6): 897-904. doi: 10.12153/1674-991X.20200069 [27] 王书航, 郑朔方, 尚晓, 等. 平原河网景观湖泊水质提升关键问题分析与对策研究: 以嘉兴南湖为例[J]. 环境工程技术学报, 2020, 10(6): 891-896. doi: 10.12153/j.issn.1674-991X.20200065 [28] 季宏康, 范帆, 王宝印, 等. 嘉兴南湖水系水污染特征分析及治理策略[J]. 环境污染与防治, 2018, 40(5): 581-587. [29] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境出版集团, 2019. [30] 李剑超, 胡仁志, 王波, 等. 船舶螺旋桨射流扰动下的污染底泥起悬研究[J]. 环境科学与技术, 2005, 28(2): 6-8. doi: 10.3969/j.issn.1003-6504.2005.02.003 [31] 马迎群, 迟明慧, 赵艳民, 等. 嘉兴市南湖水污染特征成因分析控制对策[J]. 净水技术, 2020, 39(5): 56-63. [32] MOORE W S, OLIVEIRA J. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes[J]. Estuarine Coastal and Shelf Science, 2008, 3(1): 512-521. [33] 王华, 逄勇, 刘申宝, 等. 沉水植物生长影响因子研究进展[J]. 生态学报, 2008, 28(8): 3958-3968. doi: 10.3321/j.issn:1000-0933.2008.08.056 [34] 张运林, 秦伯强, 陈伟民, 等. 太湖水体透明度的分析、变化及相关分析[J]. 海洋湖沼通报, 2003, 25(2): 30-36. doi: 10.3969/j.issn.1003-6482.2003.02.005 [35] 许多, 王昊, 王培京, 等. 水下生态系统构建技术研究进展及应用现状[J]. 环境科学与技术, 2020, 43(S1): 37-43. [36] 魏志杰. 城市核心区航道环保疏浚施工技术及应用: 以嘉兴南湖环保清淤为例[J]. 中国水运, 2021(7): 125-127.