-
喹诺酮类抗生素 (fluoroquinolones,FQs) 作为目前使用最广泛的一类人畜通用药物,因其具有抗菌力强、抗菌谱广、降解快、毒副作用低、价格低廉和安全性高等特性[1],被长期应用于畜牧业和水产养殖业中[2-5]。有研究表明,FQs在人体内或者动物体内约有70%~80%不能被完全地吸收或代谢,而是以原药或代谢体的形式排泄到体外[6],最终通过河流输入和地表径流等面源污染途径进入海洋环境[7],FQs对微生物进行持续选择,导致细菌迅速进化,产生抗生素抗性菌 (antibioticresistant bacteria,ARB) ,从而诱导动物以及微生物体内产生抗生素抗性基因 (Antibiotics resistance genes,ARGs) 。这可能改变海洋生态系统的群落结构,阻止海洋生态系统物质循环与稳定,导致物种多样性降低,威胁生物生存[8],同时对生态环境的稳定和人类生存也存在潜在危害[9]。在了解抗生素在海洋环境中的行为及其对海洋的影响的过程中,抗生素的检测分析是关键[10]。由于海水基质复杂,因而需要对海水进行前处理,以减少环境中的机制干扰,富集更多目标物。目前使用最多的检测分析方法为具有高选择性和高灵敏度的液相色谱串联质谱 (HLP-MS/MS) 法,而样品前处理过程海水的pH值、上样流速、针式滤膜填充料以及洗脱剂的用量均会直接影响目标物的富集,从而影响仪器的灵敏度和稳定性,最终导致分析结果与环境中的浓度相差较大,因此,海水中喹诺酮类抗生素提取前处理方法的建立及优化尤为重要。
1990年,已有关于液相微萃取技术前处理方法的报道[11],但由于分子结构、大小、物理化学性质及药物浓度的巨大差异,该方法很难满足多种抗生素的分析。之后也有研究者[12-13]对FQs进行了前处理条件的优化,包括pH、不同种类的固相萃取柱等的条件优化,这些方法均为单因素分析,没有考虑到多因素共同作用的影响。目前,关于海水中喹诺酮类抗生素检测前处理方法优化鲜有报道。
本研究采用正交实验设计,从优化待测样品的pH值、全自动固相萃取过柱流速、洗脱剂甲醇的用量和针式滤膜过滤器填充料的前处理条件等方面,比较海水中19种喹诺酮类抗生素在不同条件下的回收率并对喹诺酮类抗生素检测前处理方法进行优化筛选,利用优化的前处理方法测定文昌冯家湾12个不同采样点的FQs结果并分析其分布特征,为海洋环境中喹诺酮类抗生素的精准检测提供技术支撑,也为海水养殖中抗生素的使用和管控提供科学依据。
海水中喹诺酮类抗生素液质联用测定前处理方法的优化
Optimization of pre-treatment method for liquid-mass spectrometry of quinolone antibiotics in seawater
-
摘要: 为快速建立海水中喹诺酮类抗生素(fluoroquinolones,FQs)检测前处理方法,准确地检测海南文昌冯家湾FQs的质量浓度,采用正交实验对海水中FQs前处理过程进行分析并与未优化前处理方法的回收率进行对比,同时对文昌冯家湾近岸养殖区海水中的FQs进行检测。结果表明:pH=10、上样流速为10 mL·min−1、洗脱剂用量为8 mL、针式滤膜过滤器填充料使用MCE是正交实验后最优前处理条件;正交实验优化后,FQs回收率为62.31%~124.60%,相对标准偏差为1.15%~9.90%,未优化前处理条件FQs回收率为65.07%~112.83%,相对标准偏差为1.60%~24.88%;2种方法在冯家湾均检测出11种FQs,有6种FQs在12个采样点中均有检出,前处理方法优化后所测冯家湾FQs总质量浓度为81.31~136.07 ng·L−1,未优化前处理条件所测冯家湾FQs总质量浓度为74.02~114.89 ng·L−1。通过比较2种前处理方法,发现正交实验优化后的前处理方法能够更准确检测出FQs在海水中的质量浓度,可适用于海水中19种FQs的测定。以上研究结果可为精准检测海洋环境中FQs打下基础,也可为冯家湾FQs的管控提供科学依据。Abstract: In order to quickly establish a pretreatment method for fluoroquinolones(FQs) detection in seawater and accurately test the mass concentration of FQs in Fengjiawan, Wenchang, Hainan. The orthogonal experiments were conducted to analyze the pretreatment process of FQs in seawater and compare it with the recovery of the unoptimized pretreatment method, and the FQs in seawater from the nearshore culture area of Fengjiawan, Wenchang were also tested. The results showed that the optimal pretreatment conditions determined by the orthogonal experiment were following: pH=10, the loading flow rate of 10 mL·min−1, the amount of eluent of 8 mL, and the use of MCE as the filler of the needle membrane filter. After the optimization of the orthogonal experiment, the recovery of FQs was 62.31%~124.60% with the relative standard deviations of 1.15%~9.90%, and the recovery of FQs without the optimized pretreatment conditions was 65.07%~112.83% with the relative standard deviations of 1.60%~24.88%; 11 kinds of FQs were detected in Fengjiawan by both methods, 6 kinds of FQs were detected in 12 sampling points, the total mass concentrations of FQs measured in Fengjiawan after optimization of the pretreatment method were 81.31~136.07 ng·L−1, the total mass concentrations of FQs measured in Fengjiawan without optimization of the pretreatment condition were 74.02~74.02 ng·L−1. By comparing the two pretreatment methods, it was found that the optimized pretreatment method after orthogonal experiment could detect the mass concentration of FQs in seawater more accurately and could be feasible for the determination of 19 kinds of FQs in seawater. The above results can lay the foundation for accurate FQs detection in the marine environment, and also provide a scientific basis for the control of FQs in Fengjiawan.
-
表 1 采样点信息
Table 1. Sampling point information
采样区域 采样点编号 采样点位置 纬度 经度 文昌新村港 S1 废水排放河流入海口 19°23′42.98"N 110°41′1.74"E 文昌新村港 S2 渔船停泊与农业废水排放处 19°25′8.56"N 110°42′31.4"E 文昌新村港 S3 入海口处 19°24′48.41"N 110°42′36.13"E 文昌新村港 S4 外海海湾 19°24′24.29"N 110°42′45.78"E 文昌边海村管理区 S5 灯塔 (养殖污水排放处) 19°24′16.97"N 110°44′6.43"E 外海 S6 自然保护区外海 19°24′56.66"N 110°45′36.99"E 外海 S7 废弃养殖塘附近 19°25′35.71"N 110°45′23.98"E 文昌长歧河 S8 养殖排放口密集处 19°26′24.24"N 110°45′29.93"E 文昌长歧河 S9 网箱养殖区 19°26′50.79"N 110°45′45.29"E 文昌长记港 S10 渔船停泊处 19°27′25.88"N 110°45′36.09"E 文昌长记港 S11 入海口处 19°27′9.6"N 110°46′12.28"E 文昌长记港 S12 外海养殖区 19°27′14.01"N 110°46′30.69"E 表 2 抗生素检测前处理正交实验设计
Table 2. Design of orthogonal experiments for pretreatment of antibiotic test
正交实验编号 pH值(A) 上样流速(B) 针是滤膜填充料 (C) 洗脱剂用量(D) 数值 水平 数值/(mL·min−1) 水平 名称 水平 数值/mL 水平 1 8 1 4 1 MCE 1 4 1 2 8 1 6 2 尼龙 2 6 2 3 8 1 8 3 PTFE 3 8 3 4 8 1 10 4 PVDF 4 10 4 5 3 2 4 1 尼龙 2 8 3 6 3 2 6 2 MCE 1 10 4 7 3 2 8 3 PVDF 4 4 1 8 3 2 10 4 PTFE 3 6 2 9 7 3 4 1 PTFE 3 10 4 10 7 3 6 2 PVDF 4 8 3 11 7 3 8 3 MCE 1 6 2 12 7 3 10 4 尼龙 2 4 1 13 10 4 4 1 PVDF 4 6 2 14 10 4 6 2 PTFE 3 4 1 15 10 4 8 3 尼龙 2 10 4 16 10 4 10 4 MCE 1 8 3 注: MCE为混合纤维素酯,PTFE为聚四氟乙烯,PVDF为聚偏二氟乙烯。 表 3 TCI、PIP、DAN、OXO、ENR、FLU、FLE、CIP、LOM、MAR 10种抗生素回收率正交实验结果
Table 3. Results of orthogonal experiments for the recovery of 10 antibiotics: TCI, PIP, DAN, OXO, ENR, FLU, FLE, CIP, LOM and MAR
实验
编号pH(A) 上样流
速(B)针式滤膜
填充料(C)洗脱剂
用量(D)回收率/% TCI PIP DAN OXO ENR FLU FLE CIP LOM MAR 1 1 1 1 1 147.22 144.2 70.51 123.39 127.61 152.18 128.12 126.07 118.89 117.61 2 1 2 2 2 112.51 155.24 87.98 154.65 111.76 125.53 152.76 124.87 105.71 106.12 3 1 3 3 3 91.67 91.13 22.61 155.95 35.49 161.17 69.13 50.45 45.16 44.55 4 1 4 4 4 124.91 166.09 94.53 90.64 116.81 116.85 155.6 133.3 111.08 108.59 5 2 1 2 3 126.59 181.47 115.25 168.87 132.99 155 125.82 146.99 121.05 125.74 6 2 2 1 4 106.02 179.24 94.35 75.21 129.1 116.02 151.13 163.83 104.75 112.39 7 2 3 4 1 56.6 89.00 62.77 56.5 72.14 47.05 86.71 79.49 60.51 66.31 8 2 4 3 2 139.34 117.65 63.52 169.63 112.86 129.28 131.37 127.81 126.56 96.84 9 3 1 3 4 37.25 51.19 89.38 76.34 27.33 63.71 50.85 30.21 63.94 108.49 10 3 2 4 3 81.13 39 56.79 75.64 88.85 102.54 105.93 46.55 72.8 75.08 11 3 3 1 2 96.45 31.37 63.22 87.16 86.88 122.07 112.74 42.82 82.81 81.11 12 3 4 2 1 40.59 13.93 20.18 31.21 52.57 71.68 64.17 44.92 45.91 13.88 13 4 1 4 2 86.89 129.97 62.67 103 89.93 76.01 129.83 107.79 90.43 95.61 14 4 2 3 1 123.95 123.99 70.09 141.77 113.17 160.52 142.55 105.39 104.83 102.07 15 4 3 2 4 77.03 101.4 55.49 88.35 68.44 115.35 113.69 80.57 78.71 77.53 16 4 4 1 3 117.01 62.31 117.95 86.53 118.27 124.15 93.98 93.88 91.23 124.6 K1 8 066.28 7 836.1 7 228.41 6 525.73 K2 8241.34 8 076.91 7 745.29 7 637.62 K3 4968.75 5 548.23 7 082.94 7 101.66 K4 7261.28 7 076.4 6 481.01 7 272.63 ${\overline K}_1 $ 106.14 103.11 95.11 85.86 ${\overline K}_2 $ 108.44 106.28 101.91 100.5 ${\overline K}_3 $ 65.38 73 93.2 93.44 ${\overline K}_4 $ 95.54 93.11 85.28 95.69 R 43.06 33.27 16.64 14.63 表 4 NAL、NOR、PEF、SAR、DIF、SPA、CIN、OFL、ENO 9种抗生素回收率正交实验结果
Table 4. Results of orthogonal experiments for the recovery of 9 antibiotics: NAL, NOR, PEF, SAR, DIF, SPA, CIN, OFL and ENO
实验
编号pH(A) 上样流
速(B)针式滤膜
填充料(C)洗脱剂
用量(D)回收率/% NAL NOR PEF SAR DIF SPA CIN OFL ENO 1 1 1 1 1 158.22 129.01 64.16 99.37 143.94 95.27 135.69 117.7 126.33 2 1 2 2 2 133.71 123.96 80.41 91.01 107.81 68.46 132.71 111.98 116.09 3 1 3 3 3 118.99 58.32 27.65 40.6 54.57 31.89 157.68 36.49 51.31 4 1 4 4 4 42.93 135.62 82.53 106.45 115.68 76.15 168.42 118.19 128.37 5 2 1 2 3 133.08 147.06 95.66 105.89 126.45 72.34 170.35 136.7 142.29 6 2 2 1 4 100.44 150.39 68.43 127.37 139.03 72.43 124.55 116.66 138.68 7 2 3 4 1 20.17 74.98 52.37 64.32 67.01 38.05 56.36 70.23 70.43 8 2 4 3 2 120.98 116.65 49.17 127.69 150.28 123.01 133.84 100.38 113.87 9 3 1 3 4 58.23 63.25 75.46 110.11 122.93 46.89 85.95 53.19 67.37 10 3 2 4 3 37.11 56.18 50.93 79.67 92.2 46.79 110.65 78.09 102.31 11 3 3 1 2 55.41 57.25 55.56 83.59 100.07 70.02 74.02 79.95 102.09 12 3 4 2 1 30.17 16.35 20.62 58.57 88.4 50.13 50.51 33.73 56.36 13 4 1 4 2 27.43 111.83 60.68 70.32 75.47 37.57 143.01 95 105.56 14 4 2 3 1 135.15 108.71 63.35 81.21 116.87 83.37 221.24 106.23 100.93 15 4 3 2 4 98.63 86.09 49.73 51.09 58.38 32.66 132.16 80.34 82.21 16 4 4 1 3 98.31 67.45 68.84 93.61 63.7 110.99 99.35 98.47 98.43 K1 8 066.28 7 836.1 7 228.41 6 525.73 K2 8 241.34 8 076.91 7 745.29 7 637.62 K3 4 968.75 5 548.23 7 082.94 7 101.66 K4 7 261.28 7 076.4 6 481.01 7 272.63 ${\overline K}_1 $ 106.14 103.11 95.11 85.86 ${\overline K}_2 $ 108.44 106.28 101.91 100.5 ${\overline K}_3 $ 65.38 73 93.2 93.44 ${\overline K}_4 $ 95.54 93.11 85.28 95.69 R 43.06 33.27 16.64 14.63 -
[1] 王岩. 氟喹诺酮类药物左氧氟沙星联合黄连素治疗细菌性痢疾的效果分析[J]. 中国医药指南, 2020, 18(2): 153-154. [2] 杨晓辉. 抗生素在水中的污染及其对环境的危害[J]. 科技信息, 2012(29): 431. doi: 10.3969/j.issn.1001-9960.2012.29.319 [3] 龙泉鑫, 何颖, 谢建平. 喹诺酮类药物作用的生理和遗传的分子机制[J]. 药学学报, 2012, 47(8): 969-977. [4] 谢燕萍. 喹诺酮类药物研究进展[J]. 临床合理用药杂志, 2012, 5(1): 143-146. doi: 10.3969/j.issn.1674-3296.2012.01.123 [5] 张石云, 宋超, 陈家长. 喹诺酮类抗生素在水产养殖中应用的研究进展[J]. 江苏农业科学, 2019, 47(3): 32-36. [6] 丁紫荣, 黎玉清, 王雄, 等. 固相萃取-液相色谱-三重四极杆串联质谱测定养殖废水中17种氟喹诺酮类抗生素[J]. 环境工程学报, 2022, 16(2): 674-683. [7] JIA A, HU J, WU X, et al. Occurrence and source apportionment of sulfonamides and their metabolites in Liaodong Bay and the adjacent Liao River basin, North China[J]. Environmental Toxicology and Chemistry, 2011, 30(6): 1252-1260. doi: 10.1002/etc.508 [8] RYSZ M, ALVAREZ P J. Amplification and attenuation of tetracycline resistance in soil bacteria: Aquifer column experiments[J]. Water Research, 2004, 38(17): 3705-3712. doi: 10.1016/j.watres.2004.06.015 [9] 刘桂英, 葛坤, 王召会, 等. 近岸海域抗生素污染状况的研究进展[J]. 渤海大学学报(自然科学版), 2017, 38(4): 331-336. [10] PRIETO A, SCHRADER S, BAUER C, et al. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water[J]. Analytica Chimmica Acta, 2011, 685(2): 146-152. doi: 10.1016/j.aca.2010.11.038 [11] URIARTE D, DOMINI C, GARRIDO M. New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples[J]. Talanta, 2019, 201: 143-148. doi: 10.1016/j.talanta.2019.04.001 [12] LEFEUVRE S, BOIS-MAUBLANC J, HOCQUELOUX L, et al. A simple ultra-high-performance liquid chromatography-high resolution mass spectrometry assay for the simultaneous quantification of 15 antibiotics in plasma[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066: 50-58. doi: 10.1016/j.jchromb.2017.09.014 [13] 叶蕾, 张聪, 徐丽. 液相微萃取技术在药物分析中的应用[J]. 分析科学学报, 2011, 27(5): 665-670. [14] 佚名. 生态环境部发布《污水监测技术规范》等十一项国家环境保护标准[J]. 电力科技与环保, 2020, 36(1): 11. [15] 朱正锋, 齐大鹏, 王军华, 等. 超声波处理对对位芳纶纤维侵蚀性能的影响[J]. 纺织学报, 2012, 33(1): 24-28. [16] 姜春霞, 黎平, 李森楠, 等. 海南东寨港海水和沉积物中抗生素抗性基因污染特征研究[J]. 生态环境学报, 2019, 28(1): 128-135. [17] 曾若菡, 齐钊, 张腾云, 等. 海南东部海水养殖区抗生素残留的生态风险评估[J]. 热带生物学报, 2021, 12(1): 41-48. [18] HERRERA-HERRERA A V, HERNANDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples[J]. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75: 130-137. doi: 10.1016/j.jpba.2012.11.026 [19] 祁彦洁. 水中抗生素的检测方法与非生物衰减行为研究[D]. 北京: 中国地质大学, 2014. [20] 吕敏, 陈令新. 近海环境中抗生素分析样品前处理技术的研究进展[J]. 色谱, 2020, 38(1): 95-103. [21] 陈文胜, 谭慧嘉, 钟志雄, 等. 固相萃取-液相色谱法测定水中喹诺酮类抗生素[J]. 华南预防医学, 2020, 46(2): 178-182. [22] VOLMER D A, MANSOORI B, LOCKE S J. Study of 4-quinolone antibiotics in biological samples by short-column liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 1997, 69(20): 4143-4155. doi: 10.1021/ac970425c [23] 陈昌福, 王玉堂. 水产养殖中抗生素类药物使用现状、问题与对策(连载一)[J]. 中国水产, 2015(4): 65-68. [24] LIANG X, CHEN B, NIE X, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China[J]. Chemosphere, 2013, 92(11): 1410-1416. doi: 10.1016/j.chemosphere.2013.03.044 [25] 张力媛. 喹诺酮类抗生素检测方法的优化及其在水中光解、水解特性研究[D]. 长春: 吉林农业大学, 2016. [26] 彭艳, 丁世敏, 刘蕖, 等. 水环境中抗生素的光化学降解研究进展[J]. 广州化工, 2016, 44(10): 14-17.