-
随着药物、个人护理品、杀虫剂等各类有机化合物的广泛使用,大量有机微污染物在水源地水体中被检出[1-2]。这些有机微污染物浓度较低,且成分复杂,在使用传统的气相色谱-质谱联用技术(GC-MS)对其进行分析时,因样品成分较为复杂,会出现严重的峰重叠现象,且由于传统GC-MS峰容量与灵敏度较低,物质无法被充分检出[3]。
全二维气相色谱(GC×GC)通过将分离机理不同而又相互独立的2根色谱柱串联,分别根据物质的挥发性与极性对其进行正交分离,所得到的峰容量为2柱峰容量的乘积,因此,相比于传统的一维气相色谱,全二维气相色谱技术极大地提高了物质的分离度与峰容量[4-8]。此外,该技术还具有一维气相色谱所不具备的族分离效应与瓦片效应等优点,通过将全二维气相色谱与飞行时间质谱(TOFMS)联用,能够实现对复杂环境样本中大量有机物的充分检出[9-10]。通常所进行的污染物监测通过使用靶向筛查技术有针对性地对清单内污染物进行筛查,因此,可能会忽略未纳入清单但对人体或环境有潜在影响的化合物;而非靶向筛查技术能够克服这一缺陷,可对环境中广泛存在的各类未知化学物质进行监测[11-12]。将全二维气相色谱-飞行时间质谱联用技术(GC×GC-TOFMS)应用于化合物的非靶向筛查,能够充分体现其分离度好、峰容量大的巨大优势。GC×GC-TOFMS在环境领域的应用十分广泛, HOH等[13]利用GC×GC-TOFMS非靶向分析了大西洋海豚鲸脂中广泛的非极性、持久性和生物累积性污染物,共确定了24类271种化合物。其中86种为不经常用于靶向筛查的人为污染物,54种为卤化天然产物。GOMEZ等[14]建立了基于搅拌棒吸附萃取与GC×GC-TOFMS的新型分析方法,用于废水与河水中非极性或半极性污染物的自动搜索和评估,通过非靶向筛查检测出胆固醇及其降解产物、药物、工业品、农药与多氯联苯等靶向筛查未涵盖的新污染物。将GC×GC-TOFMS技术应用于水体环境中污染物的非靶向筛查已有部分研究,然而针对饮用水水源地水体污染物的研究还并不多见。GUO等[15]使用GC×GC-TOFMS对中国2个饮用水水源地水体中的嗅味物质进行筛查,建立了同时测定包括硫醚类、醛类、吡嗪类、苯系物和酚类在内54种常见化合物的测定方法。WANDA等[16]通过使用全二维气相色谱-高分辨飞行时间质谱联用技术对南非部分省份饮用水与污水中包括卡马西平、佳乐麝香、咖啡因、吐纳麝香、4-壬基酚和双酚A在内的新兴微污染物进行了定量研究。与以往研究相比,本研究对水源地水体中广泛存在的各类别未知有机物进行了全方位筛查与溯源工作。
本研究采用全二维气相色谱-飞行时间质谱(GC×GC-TOFMS)技术对我国长江下游地区3个饮用水水库中的有机物进行非靶向高通量筛查,通过建立有机物半定量识别方法进行物质种类与相对含量分析,同时对污染物来源进行推测,以期为GC×GC-TOFMS在重点流域的水质监测及饮用水水源地监测中的应用提供参考。
基于全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)技术对长江下游水源水中未知有机物的高通量筛查
High-throughput screening of unknown organics in water body of water sources in the lower reaches of the Yangtze River by GC×GC-TOFMS
-
摘要: 为全面了解长江下游水源水中未知有机物组成及其相对含量,判断水质特征、评估生态风险,采用全二维气相色谱-飞行时间质谱联用技术(GC×GC-TOFMS)对我国长江下游地区3个饮用水水库(YX水库、LF水库、WH水库)中的有机物进行非靶向半定量筛查,并进行污染物溯源分析。结果表明:YX、LF、WH水库分别检出有机物146、143、88种;3个水库均检出的有机物共43种,包括饱和烷烃10种、脂类物质10种;YX水库中正构烷烃呈现较多短链与长链的双峰型分布特征,其绝大部分来源为水体低等浮游生物源与陆地高等植物源,且2种来源对正构烷烃总量都有较大贡献;3个水库中有机微污染物主要来源于生活源与工业源,YX水库各采样点生活源污染物检出16~43种,峰面积占比为22.87%~32.80%,工业源污染物检出11~27种,峰面积占比为11.93%~22.08%;不同水库水体检出有机物的种类、来源均具一定差异性,根据地区的差异与工业、农业、医药等生产类别的不同,排放至水体中的污染物种类不尽相同。全二维气相色谱−飞行时间质谱联用技术对于水体未知污染物的识别具有巨大优势,在污染物筛查领域有着良好的应用前景。本研究成果可为长江下游水源地水体微污染物控制工作提供参考。
-
关键词:
- 全二维气相色谱-飞行时间质谱(GC×GC-TOFMS) /
- 有机组分 /
- 非靶向分析 /
- 水源
Abstract: In order to comprehensively understand the unknown organic composition and relative content of water sources in the lower Reaches of the Yangtze River, judge water quality characteristics and assess ecological risks, this study conducted non targeted semi quantitative screening of organic matter in three drinking water reservoirs (YX Reservoir, LF Reservoir, WH Reservoir) in the Lower Reaches of the Yangtze River in China by using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS), and speculated the source of pollutants. The results showed that 146, 143 and 88 organic compounds were detected in YX, LF and WH Reservoirs, respectively. There were 43 kinds of organic compounds detected in all three reservoirs, including 10 kinds of saturated alkanes and 10 kinds of lipids. The distribution characteristics of n-alkanes in the water body of YX Reservoir were bimodal with short chain and long chain, most of n-alkanes came from plankton and land plants, and both of them contributed greatly to n-alkanes in the water. The organic micropollutants in the three reservoirs mainly came from domestic and industrial sources, 16~43 kinds of domestic source pollutants were detected at each sampling point, and the peak area of them accounted for 22.87%~32.80%, 11~27 kinds of industrial source pollutants were detected at each sampling point, and the peak area of them accounted for 11.93%~22.08%. The types and sources of organic compounds detected in different reservoirs were different to some extent. According to the regional differences and the different production categories of industry, agriculture and medicine, the types of pollutants discharged into water bodies were different. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry has great advantages in the identification of unknown pollutants in water, and it has a good application prospect in the field of pollutant screening. The results of this study can provide a reference for the control of micropollutants in water sources of the lower Reaches of the Yangtze River. -
表 1 各采样水库信息概述
Table 1. Overview of information of each sampling reservoir
水库名称 总库容/
(104 m3)水库深
度/m所在地区主要工业产业 YX水库 1.5 80 金属冶炼、化工、造纸、
橡胶和塑料制品LF水库 0.15 125 锁具、服装、造纸 WH水库 0.65 350 服装、纺织 注:YX水库属中型水库;LF、WH水库属小型水库。 表 2 3个水库共同检出的43种化合物信息
Table 2. Information of 43 compounds detected in all three reservoirs
化合物 CAS号 分子组成 化合物 CAS号 分子组成 2-甲基二十八烷 1560-98-1 C29H60 正二十一烷 629-94-7 C21H44 2-甲基十八烷 1560-88-9 C19H40 2-甲基二十烷 1560-84-5 C21H44 植烷 638-36-8 C20H42 苯甲酸乙基己酯 5444-75-7 C15H22O2 1,4-二甲基萘 571-58-4 C12H12 (±)-3-羟基-r-丁内酯 5469-16-9 C4H6O3 1,6-二甲基萘 575-43-9 C12H12 3,5-二叔丁基-4-羟基苯甲醛 1620-98-0 C15H22O2 正十六烷 544-76-3 C16H34 棕榈酸 57-10-3 C16H32O2 正十九烷 629-92-5 C19H40 二苯甲酮 119-61-9 C13H10O 3-甲基十七烷 6418-44-6 C18H38 正癸酸 334-48-5 C10H20O2 正二十七烷 593-49-7 C27H56 3-十三酮 1534-26-5 C13H26O 2,6,10-三甲基十二烷 3891-98-3 C15H32 正癸醛 112-31-2 C10H20O 7,9-二叔丁基-1-氧杂螺[4.5]
癸-6,9-二烯-2,8-二酮82304-66-3 C17H24O3 苯氧乙醇 122-99-6 C8H10O2 邻苯二甲酸二丁酯 84-74-2 C16H22O4 2,6-二(叔丁基)-4-羟基-4-甲基-
2,5-环己二烯-1-酮10396-80-2 C15H24O2 邻苯二甲酸二异丁酯 84-69-5 C16H22O4 3-(3,5-二叔丁基-4-羟
基苯基)丙酸十八酯2082-79-3 C35H62O3 邻苯二甲酸二甲酯 131-11-3 C10H10O4 十六酸乙酯 628-97-7 C18H36O2 2,6-二叔丁基-4-甲基苯酚 128-37-0 C15H24O 十一醛 112-44-7 C11H22O 十二醛 112-54-9 C12H24O (+)-雪松醇 77-53-2 C15H26O 邻苯二甲酸二乙酯 84-66-2 C12H14O4 邻苯二甲酸二
(2-乙基己基)酯117-81-7 C24H38O4 十七烷-3-酮 84534-29-2 C17H34O 壬醛 124-19-6 C9H18O 己内酰胺 105-60-2 C6H11NO N,N-二丁基甲酰胺 761-65-9 C9H19NO 芥酸酰胺 112-84-5 C22H43NO 十六甲基环八硅氧烷 556-68-3 C16H48O8Si8 十二甲基环六硅氧烷 540-97-6 C12H36O6Si6 苯并噻唑 95-16-9 C7H5NS 2,2,4-三甲基-1,3-戊
二醇二异丁酸酯6846-50-0 C16H30O4 表 3 YX水库各来源污染物峰面积占比与采样点污染物种类数
Table 3. Proportion of peak area of pollutants from each source and the number of pollutants in a single sampling point in YX Reservoir
来源 峰面积占比/% 采样点污染物种类数 生活源 22.87~32.80 16~43 工业源 11.93~22.08 11~27 药物医药源 0.24~5.49 1~11 农业源 0.14~1.31 2~6 其他来源 40.78~59.42 33~89 -
[1] TANG Y K, ZHONG Y X, LI H L, et al. Contaminants of emerging concern in aquatic environment: Occurrence, monitoring, fate, and risk assessment[J]. Water Environment Research, 2020, 92(10): 1811-1817. doi: 10.1002/wer.1438 [2] VASILACHI I C, ASIMINICESEI D M, FERTU D I, et al. Occurrence and fate of emerging pollutants in water environment and options for their removal[J]. Water, 2021, 13(2): 181. doi: 10.3390/w13020181 [3] MOSTAFA A, GORECKI T. Sensitivity of comprehensive two-dimensional gas chromatography (GC×GC) versus one-dimensional gas chromatography (1D GC)[J]. LC GC Europe, 2013, 26(12): 672-679. [4] KRUVE A, KIEFER K, HOLLENDER J. Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater[J]. Analytical and Bioanalytical Chemistry, 2021, 413(6): 1549-1559. doi: 10.1007/s00216-020-03109-2 [5] SGORBINI B, CAGLIERO C, BOGGIA L, et al. Parallel dual secondary-column-dual detection comprehensive two‐dimensional gas chromatography: A flexible and reliable analytical tool for essential oils quantitative profiling[J]. Flavour and Fragrance Journal, 2015, 30(5): 366-380. doi: 10.1002/ffj.3255 [6] STILO F, LIBERTO E, REICHENBACH S E, et al. Exploring the extra-virgin olive oil volatilome by adding extra dimensions to comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry featuring tandem ionization: Validation of ripening markers in headspace linearity conditions[J]. Journal of AOAC International, 2021, 104(2): 274-287. doi: 10.1093/jaoacint/qsaa095 [7] EISERBECK C, NELSON R K, GRICE K, et al. Comparison of GC-MS, GC-MRM-MS, and GC×GC to characterise higher plant biomarkers in Tertiary oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 2012, 87: 299-322. doi: 10.1016/j.gca.2012.03.033 [8] MURRAY J A. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2012, 1261: 58-68. doi: 10.1016/j.chroma.2012.05.012 [9] MUSCALU A M, GORECKI T. Comprehensive two-dimensional gas chromatography in environmental analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 225-245. doi: 10.1016/j.trac.2018.07.001 [10] MAZUR D M, ZENKEVICH I G, ARTAEV V B, et al. Regression algorithm for calculating second-dimension retention indices in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2018, 1569: 178-185. doi: 10.1016/j.chroma.2018.07.038 [11] CCANCCAPA-CARTAGENA A, PICO Y, ORTIZ X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057 [12] GAGO-FERRERO P, SCHYMANSKI E L, BLETSOU A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49(20): 12333-12341. [13] HOH E, DODDER N G, LEHOTAY S J, et al. Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments[J]. Environmental Science & Technology, 2012, 46(15): 8001-8008. [14] GOMEZ M J, HERRERA S, SOLE D, et al. Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(7): 2638-2647. doi: 10.1021/ac102909g [15] GUO Q Y, LI X, YU J W, et al. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the screening of potent swampy/septic odor-causing compounds in two drinking water sources in China[J]. Analytical Methods, 2015, 7(6): 2458-2468. doi: 10.1039/C4AY03026E [16] WANDA E M M, NYONI H, MAMBA B B, et al. Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga, and North West Provinces, South Africa[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 79. doi: 10.3390/ijerph14010079 [17] 徐伊静, 颜诗婷, 李佳敏, 等. 硅胶固载磺酸功能化离子液体催化棕榈酸制备生物柴油的工艺研究[J]. 中国粮油学报, 2019, 34(10): 42-48. doi: 10.3969/j.issn.1003-0174.2019.10.008 [18] 魏斌, 杜虎, 鲁墨弘, 等. 环保增塑剂 2, 2, 4-三甲基-1, 3-戊二醇二异丁酸酯的合成[J]. 精细石油化工, 2017, 34(6): 54-58. doi: 10.3969/j.issn.1003-9384.2017.06.012 [19] 郭威. 珠江口水体和沉积物有机碳的来源及其生物地球化学特征[D]. 北京: 中国科学院研究生院(广州地球化学研究所), 2016. [20] 曹龙, 张朝升, 陈秋丽, 等. 邻苯二甲酸酯的环境污染和生态行为及毒理效应研究进展[J]. 生态毒理学报, 2018, 13(2): 34-46. doi: 10.7524/AJE.1673-5897.20170829001 [21] PRAHL F G, ERTEL J R, GONI M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3035-3048. doi: 10.1016/0016-7037(94)90177-5 [22] 冯精兰, 席楠楠, 张飞, 等. 黄河河南段水体中正构烷烃的分布特征与来源解析[J]. 环境科学, 2016, 37(3): 893-899. doi: 10.13227/j.hjkx.2016.03.013 [23] 李昆, 赵晓辉, 李科林, 等. 潘家口水库水体中有机物分布特征及变化趋势分析[J]. 人民珠江, 2020, 41(8): 98-102. doi: 10.3969/j.issn.1001-9235.2020.08.015 [24] 高静静, 陈丽玮, 王宜青, 等. 一株邻苯二甲酸二 (2-乙基己基) 酯 (DEHP) 高效降解菌的筛选及其降解特性[J]. 环境化学, 2016, 35(11): 2362-2369. doi: 10.7524/j.issn.0254-6108.2016.11.2016040103 [25] 王笑妍, 薛燕波, 者东梅, 等. 邻苯二甲酸酯类增塑剂概况及法规标准现状[J]. 中国塑料, 2019, 33(6): 95-105. doi: 10.19491/j.issn.1001-9278.2019.06.016 [26] 张悦, 袁骐, 蒋玫, 等. 邻苯二甲酸酯类毒性及检测方法研究进展[J]. 环境化学, 2019, 38(5): 1035-1046. [27] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2002.