-
人工湿地作为一种生态型水处理技术,具有污染物去除率高、易于维护、运行成本低等优点,已被广泛用于处理不同类型的污水,如污水厂尾水、村镇生活污水等[1-3]。潮汐流人工湿地(tidal flow constructed wetland,TFCW)通过对湿地进行周期性的浸没和排空,使得湿地内部不断形成好氧-厌氧环境,可在去除有机污染物的同时实现脱氮[4]。TFCW具有较好的复氧效果,常用于强化硝化过程,通过增加淹水期时长,使得湿地内部某一阶段处于缺氧或厌氧状态,形成适于反硝化微生物活动的缺氧/厌氧微环境,保证TFCW达到强化脱氮的目的。在人工湿地中,微生物反硝化作用是脱氮的主要途径,通过此途径去除的氮量可达湿地脱氮总量的60%~70%[5],而通过湿地植物吸收的氮量占比较小(约10%)[6]。温度、pH、溶解氧(dissolved oxygen, DO)以及碳源等均是影响反硝化作用的主要因素,其中关键因素是碳源。碳源可为反硝化细菌提供电子供体,促进硝酸盐(NO3−-N)还原为气态氮化物和氮气(N2),实现脱氮。
采用人工湿地深度处理污水厂尾水时,由于反硝化过程中缺少电子供体,脱氮效率普遍偏低。为此,国内外学者围绕湿地外加碳源强化反硝化作用开展了大量研究。乙酸钠、甲醇、葡萄糖等传统化学碳源都可作为人工湿地的外加碳源[7-9],显著提高人工湿地的脱氮效率,但存在成本较高且投加不当易造成二次污染的缺点[10]。工业有机废水中有机物种类丰富、浓度较高,也可作为碳源强化人工湿地脱氮,但其成分复杂,需考虑应用过程中是否会引进新的污染物质以及是否对微生物产生不良影响[9,11]。固态碳源如稻草秸秆、玉米芯、芦苇杆等具有成本低、可为微生物提供附着条件等优点,但存在碳源释放不稳定的问题[9,12-13]。
餐厨垃圾具有有机质含量高、易降解的特点,被认为是生产碳源的适宜基质[14]。2020年,我国产生城市固体废物约2.35×108 t,其中餐厨垃圾约占50%~60%。目前,餐厨垃圾处理技术中厌氧发酵在我国使用最为广泛。截至2015年,118座50 t∙d−1以上处理规模的餐厨垃圾处理厂中近70%采用厌氧发酵技术[15]。餐厨垃圾厌氧发酵是生产碳源的常用方法。有研究[16-17]表明,餐厨垃圾发酵液(food waste fermentation liquid, FWFL)含有大量可作为反硝化碳源的碳水化合物、挥发性脂肪酸(volatile fatty acids, VFAs)等。
目前将FWFL作为碳源的研究主要集中在FWFL的有效组分以及反硝化性能方面,将FWFL应用于人工湿地反硝化脱氮的研究报道较少。FWFL成分较为复杂,应用于污水厂尾水脱氮时其中的无效干扰组分可能会引起二次污染和出水水质波动,因此,验证FWFL投加时人工湿地的综合除污效能十分关键。本实验通过向污水处理厂尾水湿地投加FWFL调节其碳氮比(carbon/nitrogen, C/N),研究了不同C/N对TFCW脱氮和综合除污效果、湿地填料生物膜硝化速率、反硝化速率、厌氧氨氧化速率及相关酶活性、电子传递系统活性(electron transport system activity, ETSA)、微生物群落结构的影响,解析了FWFL强化人工湿地反硝化脱氮的机理,以期为FWFL强化人工湿地脱氮应用于实际工程提供技术支撑。
餐厨垃圾发酵液强化潮汐流人工湿地对污水厂尾水脱氮效能
Enhanced denitrification of sewage treatment plant effluent by tidal flow constructed wetland with food waste fermentation liquid addition
-
摘要: 采用餐厨垃圾发酵液(food waste fermentation liquid, FWFL)作为潮汐流人工湿地(tidal flow constructed wetland, TFCW)外加碳源,考察其对污水处理厂尾水湿地脱氮效果的影响,并通过湿地氮转化速率、酶活性测定及微生物群落结构分析探究其机理。结果表明:投加FWFL后人工湿地中TN、NO3--N、TP的去除率分别提高了15.7%~36.2%、3.3%~42.3%、11.2%~45.8%,且FWFL的添加不会对出水NH4+-N和COD产生显著影响;FWFL可改善TFCW低温时的脱氮效果;投加FWFL后TFCW的反硝化速率、反硝化酶活性以及电子传递系统活性均有所提高,TFCW微生物的丰富度和多样性明显提高,微生物群落结构也趋于稳定,反硝化菌群大量增加。变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)与念珠菌门(Candidatus Saccharribacteria)为优势菌门,水杆菌属(Aquabacterium)与产丁酸盐细菌属(Saccharibacteria genera incertae sedis)为优势菌属。Abstract: The food waste fermentation liquid (FWFL) was used as the carbon source of the tidal flow constructed wetland (TFCW), and the effect of FWFL addition on nitrogen removal of sewage treatment plant effluent was investigated. Furthermore, the denitrification mechanism was explored through the determination of wetland nitrogen conversion rate, enzyme activity and microbial community structure. The results showed that, after adding FWFL in the TFCW, the removal rates of TN, NO3−-N and TP in sewage treatment plant effluent increased by 15.7%~36.2%, 3.3%~42.3% and 11.2%~45.8%, respectively, and the addition of FWFL did not have a significant impact on effluent NH4+-N and COD, while it could improve the denitrification effect of the TFCW at low temperatures; the rates of denitrification, denitrification enzyme activity and electron transport system activity of the TFCW increased with FWFL addition; the richness and diversity of wetland microorganisms were significantly improved, the microbial community structure also tended to be stable, and the denitrifying microbiota increased significantly. Proteobacteria, Bacteroidetes, Candidatus Saccharribacteria were the dominant phylums, Aquabacterium and Saccharibacteria genera incertae sedis were the dominant genus.
-
表 1 人工湿地进水水质
Table 1. Influent water quality of the constructed wetlands
mg∙L−1 C/N COD NO3−-N NH4+-N TN TP 4 41.6±6.6 9.7±1.1 2.7±0.1 11.0±0.9 0.7±0.1 6 60.8±7.4 9.7±1.1 2.3±0.4 10.4±0.9 0.7±0.1 7 68.9±9.7 9.2±2.7 1.9±0.3 10.2±2.1 0.6±0.2 8 82.6±12.2 9.0±1.4 1.8±0.5 8.1±1.3 0.6±0.1 表 2 不同体积比时VFAs质量浓度随发酵时间的变化
Table 2. Change in the mass concentration of VFAs at different volume ratios with the fermentation time
发酵时间/d FW:AS=1:1 FW:AS=5:1 FW:AS=9:1 乙酸/(mg∙L−1) 戊酸/(mg∙L−1) 乙酸/(mg∙L−1) 戊酸/(mg∙L−1) 乙酸/(mg∙L−1) 戊酸/(mg∙L−1) 1 96.6 10.8 125.8 15.9 87.6 — 2 138.9 7.7 202 — 130.6 — 3 234.8 10.0 235.9 — — — 4 258.6 — 318.6 6.1 — — 5 243.3 — 295.5 8.7 — — 6 277.9 — 311.5 6.5 — — 7 301.1 — 327.9 4.0 — — 8 321.8 — 340.2 2.0 — — 注:-表示未检出。 -
[1] PARDE D, PATWA A, SHUKLA A, et al. A review of constructed wetland on type, treatment and technology of wastewater[J]. Environmental Technology & Innovation, 2021, 21: 101261. [2] ZHANG Y, LI M, DONG L, et al. Effects of biochar dosage on treatment performance, enzyme activity and microbial community in aerated constructed wetlands for treating low C/N domestic sewage[J]. Environmental Technology & Innovation, 2021, 24: 101919. [3] LI X, LI Y, LV D, et al. Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage[J]. Science of the Total Environment, 2020, 709: 136235. doi: 10.1016/j.scitotenv.2019.136235 [4] 王振, 齐冉, 李莹莹, 等. 潮汐流人工湿地中生物蓄磷的强化及其稳定性[J]. 中国环境科学, 2017, 37(2): 534-542. doi: 10.3969/j.issn.1000-6923.2017.02.017 [5] SPIELES D, MITSCH W. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: A comparison of low- and high-nutrient riverine systems[J]. Ecological Engineering, 1999, 14(1): 77-91. [6] VYMAZAL J, 卫婷, 赵亚乾, 等. 细数植物在人工湿地污水处理中的作用[J]. 中国给水排水, 2021, 37(2): 25-30. doi: 10.19853/j.zgjsps.1000-4602.2021.02.005 [7] 肖蕾, 贺锋, 黄丹萍, 等. 人工湿地反硝化外加碳源研究进展[J]. 水生态学杂志, 2012, 33(01): 139-143. doi: 10.15928/j.1674-3075.2012.01.017 [8] BADIA A, KIM M, DAGNEW M. Nitrite denitrification using biomass acclimatized with methanol as complementary carbon source: long-term performance and kinetics study[J]. Environmental Science-Water Research & Technology, 2021, 7(1): 93-106. [9] 唐嘉陵. 餐厨垃圾发酵碳源制备及其生物脱氮利用性能研究[D]. 西安: 西安建筑科技大学, 2017. [10] LI H, CHI Z, YAN B, et al. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater[J]. Journal of Environmental Sciences, 2017, 51: 275-283. doi: 10.1016/j.jes.2016.07.008 [11] XU F, SUN R, WANG H, et al. Improving the outcomes from electroactive constructed wetlands by mixing wastewaters from different beverage-processing industries[J]. Chemosphere, 2021, 283: 131203. doi: 10.1016/j.chemosphere.2021.131203 [12] 胡曼利, 郝庆菊, 马容真, 等. 玉米芯和稻草秸秆强化潜流人工湿地对低C/N污水的处理效果[J]. 环境科学: 2022: 1-14. [13] ZHENG Y, WANG Z, CAO T, et al. Enhancement effects and pathways of nitrogen removal by plant-based carbon source in integrated vertical flow constructed wetlands[J]. Journal of Water Process Engineering, 2022, 47: 102734. doi: 10.1016/j.jwpe.2022.102734 [14] CHEN X, TANG R, QI S, et al. Inhibitory effect of oil and fat on denitrification using food waste fermentation liquid as carbon source[J]. Science of the Total Environment, 2021, 797: 149111. doi: 10.1016/j.scitotenv.2021.149111 [15] 姚丽铭, 王亚琢, 范洪刚, 等. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展: 2022: 1-14. [16] QI S, YUAN S, WANG W, et al. Effect of solid-liquid separation on food waste fermentation products as external carbon source for denitrification[J]. Journal of Cleaner Production, 2021, 284: 124687. doi: 10.1016/j.jclepro.2020.124687 [17] QI S, LIN J, WANG Y, et al. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation[J]. Chemosphere, 2021, 270: 129460. doi: 10.1016/j.chemosphere.2020.129460 [18] ZHENG X, ZHANG S, ZHANG J, et al. Advanced nitrogen removal from municipal wastewater treatment plant secondary effluent using a deep bed denitrification filter[J]. Water Science and Technology, 2018, 77(11): 2723-2732. doi: 10.2166/wst.2018.231 [19] 钟丽燕, 郝瑞霞, 王卫东, 等. DNBF-O3-GAC组合工艺深度脱除氮磷及代谢产物[J]. 环境科学: 2018, 39(1): 247-255. [20] YANG X, HE Q, GUO F, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes[J]. Environmental Science & Technology, 2020, 54(21): 14007-14016. [21] WANG Y, XIE H, WANG D, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268. doi: 10.1016/j.watres.2019.06.060 [22] WAN R, CHEN Y, ZhENG X, et al. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption[J]. Environmental Science & Technology, 2016, 50(18): 9915-9922. [23] 隗岚琳, 刘东升, 廖雪珂, 等. 垂直潜流人工湿地低温净化效果及其与微生物作用关系[J]. 环境科学学报, 2021, 41(10): 4039-4048. doi: 10.13671/j.hjkxxb.2021.0115 [24] GUAN W, YIN M, HE T, et al. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J]. Environmental Science and Pollution Research, 2015, 22(20): 16202-16209. doi: 10.1007/s11356-015-5160-9 [25] 赵诗惠, 吕亮, 蒋志云, 等. ABR-MBR组合工艺短程硝化过程的微生物种群[J]. 中国环境科学, 2018, 38(2): 566-573. doi: 10.3969/j.issn.1000-6923.2018.02.019 [26] SLY L, TAGHAVI M, FEGAN M. Phylogenetic heterogeneity within the genus Herpetosiphon: Transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum[J]. International Journal of Systematic Bacteriology, 1998, 48 Pt 3: 731-737. [27] 冯晓娟, 冼萍, 唐海芳, 等. 固定化微生物脱氮途径及微生物学机理研究[C]. 2017: 251-255. [28] WANG X, WANG W, ZHANG J, et al. Dominance of Candidatus saccharibacteria in SBRs achieving partial denitrification: Effects of sludge acclimating methods on microbial communities and nitrite accumulation[J]. RSC Advances, 2019, 9(20): 11263-11271. doi: 10.1039/C8RA09518C [29] MA X, WANG X, LIU Y, et al. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction[J]. Ecotoxicology and Environmental Safety, 2017, 138: 163-169. doi: 10.1016/j.ecoenv.2016.09.031 [30] KRAGELUND C, LEVANTESI C, Borger A, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants[J]. FEMS Microbiology Ecology, 2007, 59(3): 671-682. doi: 10.1111/j.1574-6941.2006.00251.x [31] FU X, HOU R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061 [32] LIU Y, SHENG Y, FENG C, et al. Distinct functional microbial communities mediating the heterotrophic denitrification in response to the excessive Fe(II) stress in groundwater under wheat-rice stone and rock phosphate amendments[J]. Environmental Research, 2020, 185: 109391. doi: 10.1016/j.envres.2020.109391 [33] HUANG X, DUAN C, YU J, et al. Transforming heterotrophic to autotrophic denitrification process: Insights into microbial community, interspecific interaction and nitrogen metabolism[J]. Bioresource Technology, 2022, 345: 126471. doi: 10.1016/j.biortech.2021.126471 [34] VYMAZAL J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2005, 40(6/7): 1355-1367. [35] DONG X, REDDY G. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresource Technology, 2010, 101(4): 1175-1182. doi: 10.1016/j.biortech.2009.09.071 [36] SONG J, LI Q, DZAKPASU M, et al. Integrating stereo-elastic packing into ecological floating bed for enhanced denitrification in landscape water[J]. Bioresource Technology, 2020, 299: 122601. doi: 10.1016/j.biortech.2019.122601 [37] ZHAO Y, WANG Q, YANG Z, et al. Bio-capture of Cr(VI) in a denitrification system: Electron competition, long-term performance, and microbial community evolution[J]. Journal of Hazardous Materials, 2022, 432: 128697. doi: 10.1016/j.jhazmat.2022.128697 [38] REN T, CHI Y, WANG Y, et al. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment[J]. Water Research, 2021, 206: 117742. doi: 10.1016/j.watres.2021.117742 [39] LI M, DUAN R, HAO W, et al. High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources[J]. Science of the Total Environment, 2020, 744: 140969. doi: 10.1016/j.scitotenv.2020.140969 [40] PENG C, GAO Y, FAN X, et al. Enhanced biofilm formation and denitrification in biofilters for advanced nitrogen removal by rhamnolipid addition[J]. Bioresource Technology, 2019, 287: 121387. doi: 10.1016/j.biortech.2019.121387 [41] SONG H, FENG J, ZHANG L, et al. Advanced treatment of low C/N ratio wastewater treatment plant effluent using a denitrification biological filter: Insight into the effect of medium particle size and hydraulic retention time[J]. Environmental Technology & Innovation, 2021, 24: 102044. [42] ZHAI S, JI M, ZHAO Y, et al. Shift of bacterial community and denitrification functional genes in biofilm electrode reactor in response to high salinity[J]. Environmental Research, 2020, 184: 109007. doi: 10.1016/j.envres.2019.109007 [43] BORSODI A, RUSZNYAK A, MOLNAR P, et al. Metabolic activity and phylogenetic diversity of reed(Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake[J]. Microbial Ecology, 2007, 53(4): 612-620. doi: 10.1007/s00248-006-9133-x [44] LI H, CHI Z, YAN B. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: Performance, microbial community and toxic mechanism[J]. Journal of Environmental Sciences, 2019, 79: 239-247. doi: 10.1016/j.jes.2018.07.012