-
随着城镇化进程加快,不透水地表的急剧增加导致了降雨径流污染风险增大[1],大量污染物(如氮、磷、重金属等)随着径流进入受纳水体,最终导致水质恶化[2]。有研究表明,屋顶径流为城市受纳水体贡献了5.35%的颗粒物,道路径流贡献了69.24%的颗粒物[3]。水体作为城市重要组成部分,在城市环境、美学和娱乐等方面而受到高度重视。为减少城市面源污染,实现城市高质量可持续发展,探索有效的污染控制措施是十分必要的。
源头治理是将城市雨水中污染物以及接收水体潜在负面影响降至最低的基本环节,被认为是处理低水平污染扩散成本最低的管理策略[4]。近年来,人工湿地(constructed wetland,CW)以净化效果好、运行成本低、景观效果明显等优势在径流源头控制中得到广泛的应用[5-7]。CW系统主要通过植物对营养物质的吸收、微生物的代谢、基质的吸附和通过各种形式的机械分离来达到降低的营养物质、有机物和悬浮物的目的[8]。其中微生物是CW中生态系统的分解者,包括细菌、真菌、原生动物等,其繁殖发育高度依赖于湿地的水生环境,同时微生物的生命活动也将会对系统环境产生影响[9]。微生物通过有机氮降解、硝化、反硝化方式在污染物转化中发挥着重要作用[10-11]。虽然CW系统去除污染物的机理研究已有大量报道,但复合流人工湿地中微生物群落随时间变化特征及其对氮、磷、重金属综合去除方面的研究较少。
在不同情境下,CW类型的选择存在很大差异。肖海文等[12]认为城市径流的净化以表面流人工湿地(surface flow wetland,FWS)应用为主,同时考虑增加潜流系统(vertical flow,VF)来增加高污染负荷的去除效果。然而,受场地面积限制的影响,FWS系统并不能得到广泛的推广。另外,随着人类活动的加剧,大气沉降、车辆运输和金属建筑围护结构等导致氮、磷、重金属、有机物等浓度的增加[13],传统的CW不能满足高负荷污染物的去除。潮汐流人工湿地(tidal flow constructed wetland,TFCW)是近几年兴起的流态改进型设计工艺,其采用进水-放空-闲置的进出水方式交替运行,将CW系统周期性进水和排空,即湿环境/干环境周期交替地间歇运行[14]。在运行过程中依靠床体饱和浸润面的变化产生吸力,将大气氧强迫吸入床体,提高了湿地床的氧传输量,对有机物和氨氮有较好的去除[14]。在实际应用中,可将不同类型人工湿地工艺组合,形成复合型人工湿地,从而提高CW系统在应对不同地区、季节、污染物类型的稳定性和适应性。
本研究采用潮汐流(TF)-垂直潜流(VF)复合人工湿地工艺(tidal flow-vertical flow constructed wetland,TF-VFCW),以砾石(gravel,GR)为填料基质,种植黄菖蒲(Iris pseudacorus L)为净水观赏植物,分析了该系统对城市雨水径流中污染物(COD、NH4+-N、NO3−-N、TN、TP、Cu2+)的去除效果,探究了湿地内部微生物群落变化以及对污染物去除效果的影响,为CW在城市径流中的推广应用提供科学参考。
潮汐流-垂直潜流人工湿地对城市径流污染物净化效果
Removal of pollutants from urban runoff by tidal flow-vertical flow constructed wetland
-
摘要: 人工湿地(CW)在城市径流污染源头控制中发挥重要的作用。采用潮汐流(TFCW)-垂直潜流(VFCW)串联的复合人工湿地工艺(TF-VFCW),以砾石为填料构建人工湿地模型,探究TF-VFCW长期运行下CODcr、NH4+-N、NO3−-N、TN和Cu2+的去除效果以及微生物群落变化对污染物去除效果的影响。结果表明:在80 d的运行中,TF-VFCW对COD、NH4+-N、TN的去除效率逐渐下降,平均去除率分别为62.92%、65.54%、80.83%;系统对NO3−-N的去除率先保持稳定,随后在波动中略有下降,平均去除率为95.27%;对TP的去除效果相对较为稳定,平均去除率为87.64%;对Cu2+的去除率虽有较大波动但总体上呈现上升的趋势,平均去除率为40.22%。TFCW单元的去污能力明显优于VFCW单元。随着时间的推移,TFCW单元在门水平上的优势菌种由Proteobacteria(变形菌门)变为Firmicutes(厚壁菌门);在属水平上,TF-VFCW中主要除氮微生物为Thauera(索氏菌属)、Thiobacillus(硫杆菌属)、Hydrogenophaga(噬氢菌属)、Nitrosospira(亚硝化螺菌属),主要除磷微生物为Pseudomonas(假单胞菌属)、Dechloromonas(脱氯菌属)、Bacillus(芽孢杆菌)等。TFCW的除氮、除磷功能微生物的多样性要明显优于VFCW。温度对除氮、除磷功能微生物的多样性和群落结构影响较大,NH4+-N、NO3−-N、 TN的去除效果明显受到温度的影响,而磷的去除受温度影响较小,其主要通过基质吸附和植物吸收。
-
关键词:
- 潮汐流-垂直潜流人工湿地 /
- 径流污染 /
- 微生物群落 /
- 温度
Abstract: Constructed wetland (CW) plays an important role in the source control of urban runoff pollution. A CW model (TF-VFCW) was constructed by using tidal flow (TFCW) - vertical flow (VFCW) with gravel as filler to explore the removal efficiency of CODcr, NH4+-N, NO3−-N, TN and Cu2+ under long-term operation. Then, the impact of microbial community changes on pollutant removal was discussed. The results showed that: (1) During the 80-day operation, the removal efficiency of CODcr, NH4+-N and TN by TF-VFCW decreased gradually, and the average removal rates were 62.92%, 65.54% and 80.83%, respectively. The removal rate of NO3−-N in the system remained stable at first, then decreased slightly with the fluctuation, the average removal rate was 95.27%, and the average removal rate of TP was relatively stable with an average removal rate of 87.64%. Although the removal rate of Cu2+ fluctuated greatly, it showed an upward trend on the whole, with an average removal rate of 40.22%. The decontamination ability of TFCW unit was obviously better than that of VFCW unit. (2) With the extension of time, the dominant bacteria of TFCW unit at the phylum level changed from Proteobacteria to Firmicutes; at the genus level, the main nitrogen removal microorganisms in TF-VFCW were Thauera, Thiobacillus, Hydrogenophaga, Nitrosospira. The main phosphorus removal microorganisms included Pseudomonas, Dechloromonas, Bacillus, etc. (3) The diversity of functional microorganisms for nitrogen and phosphorus removal of TFCW was significantly better than that of VFCW. Temperature had a great influence on the diversity and community structure of functional microorganisms for nitrogen and phosphorus removal. The removal efficiency of NH4+-N, NO3−-N and TN was obviously affected by temperature, while the removal of phosphorus was less affected by temperature, which was achieved mainly through substrate and plant absorption. -
表 1 人工湿地系统在不同时间下的微生物多样性和丰富度
Table 1. Microbial diversity and richness in constructed wetland system at different times
样本名称 丰富度指数 多样性指数 覆盖率/% Sobs Ace Chao Shannon Simpson TFCW-1 994 1 799.75 1 528.55 3.30 0.12 99.4 VFCW-1 1 971 2 312.61 2 325.41 5.72 0.01 98.9 TFCW-2 705 1 283.75 1 064.84 2.94 0.16 99.4 VFCW-2 1 892 2 195.94 2 147.99 5.71 0.01 98.9 -
[1] HU D, ZHANG C, MA B, et al. The characteristics of rainfall runoff pollution and its driving factors in Northwest semiarid region of China-A case study of Xi'an[J]. Science of the Total Environment, 2020, 726: 138384. doi: 10.1016/j.scitotenv.2020.138384 [2] LIU A, MUMMULLAGE S, MA Y. K, et al. Linking source characterization and human health risk assessment of metals to rainfall characteristics[J]. Environmental Pollution, 2018, 238: 866-873. doi: 10.1016/j.envpol.2018.03.077 [3] MA Y K, HAO S N, ZHAO H T, et al. Pollutant transport analysis and source apportionment of the entire non-point source pollution process in separate sewer systems[J]. Chemosphere, 2018, 211: 557-565. doi: 10.1016/j.chemosphere.2018.07.184 [4] 曾思育, 董欣. 城市降雨径流污染控制技术的发展与实践[J]. 给水排水, 2015, 51(10): 1-3. doi: 10.3969/j.issn.1002-8471.2015.10.002 [5] 刘学欣, 李珂, 陈学平, 等. 模拟生态种植槽对雨水径流的净化[J]. 环境工程学报, 2015, 9(6): 2682-2684. doi: 10.12030/j.cjee.20150623 [6] 张智涌, 双学珍, 刘栋. 人工湿地对城市降雨径流污染物的削减效应[J]. 江苏农业科学, 2017, 45(15): 259-263. doi: 10.15889/j.issn.1002-1302.2017.15.066 [7] 李娟, 张伟, 桑敏, 等. 生物滞留设施对雨水径流氮磷污染物净化机理和运行优化方式研究进展[J]. 环境工程, 2020, 38(4): 77-82. doi: 10.13205/j.hjgc.202004014 [8] NGUYEN X C, CHANG S W, NGUYEN T L, et al. A hybrid constructed wetland for organic-material and nutrient removal from sewage: process performance and multi-kinetic models[J]. Journal of Environmental Management, 2018, 222: 378-384. [9] 尹楚杰, 吕源财, 潘文斌. 人工湿地填料在废水中脱氮除磷的应用研究进展[J]. 现代化工, 2021, 41(7): 68-71. doi: 10.16606/j.cnki.issn0253-4320.2021.07.014 [10] LV T, CARVALHO P N, ZHANG L, et al. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy[J]. Water Research, 2017, 110: 241-251. doi: 10.1016/j.watres.2016.12.021 [11] PELISSARI C, GUIVEMAU M, VI As M, et al. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J]. Water Research, 2018, 141: 185-195. doi: 10.1016/j.watres.2018.05.002 [12] 肖海文, 刘馨瞳, 翟俊, 等. 人工湿地类型的选择及案例分析[J]. 中国给水排水, 2021, 37(22): 11-17. doi: 10.19853/j.zgjsps.1000-4602.2021.22.002 [13] MüLLER A, ÖSTERLUND H, MARSALEK J, et al. The pollution conveyed by urban runoff: A review of sources[J]. Science of the Total Environment, 2020, 709: 136125. doi: 10.1016/j.scitotenv.2019.136125 [14] HU Y S, ZHAO Y Q, ZHAO X H, et al. Comprehensive analysis of step-feeding strategy to enhance biological nitrogen removal in alum sludge-based tidal flow constructed wetlands[J]. Bioresource Technology, 2012, 111: 27-35. doi: 10.1016/j.biortech.2012.01.165 [15] 姚孟伟. 太原市大气降水化学特征及来源分析[D]. 太原: 太原科技大学, 2014. [16] 叶艾玲, 程明超, 张璐, 等. 太原市夏季降水中溶解态重金属特征及来源[J]. 环境科学, 2018, 39(7): 3075-3081. doi: 10.13227/j.hjkx.201710075 [17] 来雪慧, 赵金安, 李丹, 等. 太原市工业区不同下垫面降雨径流污染特征[J]. 水土保持通报, 2015, 35(6): 97-100. doi: 10.13961/j.cnki.stbctb.20151209.001 [18] LUCKE T, NICHOLS P W B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation[J]. Science of the Total Environment, 2015, 536: 784-792. doi: 10.1016/j.scitotenv.2015.07.142 [19] 范斌, 章诗辞, 刘琪, 等. 复合垂直流人工湿地—微滤复合系统净化雨水[J]. 武汉理工大学学报, 2017(11): 68-73. [20] 徐丽, 葛大兵, 谢小魁. 水力停留时间对人工湿地运行的影响[J]. 中国农学通报, 2014, 30(31): 219-223. doi: 10.11924/j.issn.1000-6850.2014-0621 [21] 郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002 [22] JFW A, CYZ A, BSW B, et al. Regulation of heavy metals accumulated by Acorus calamus L. in constructed wetland through different nitrogen forms[J]. Chemosphere, 2021, 281: 130773. doi: 10.1016/j.chemosphere.2021.130773 [23] XIA Z, LIU G, SHE Z, et al. Performance and bacterial communities in unsaturated and saturated zones of a vertical-flow constructed wetland with continuous-feed[J]. Bioresource Technology, 2020, 315: 123859. doi: 10.1016/j.biortech.2020.123859 [24] 黄小龙, 郭亮, 汪尚朋, 等. 表面流—垂直流复合湿地去除低碳氮比河水中氨氮[J]. 中国给水排水, 2018, 34(15): 70-74. [25] 赵桂瑜, 杨永兴, 杨长明. 人工湿地污水处理系统脱氮机理研究进展[J]. 四川环境, 2005(5): 64-67. doi: 10.3969/j.issn.1001-3644.2005.05.020 [26] BODELIER P, LIBOCHANT J A, BLOM C, et al. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats[J]. Applied and Environmental Microbiology, 1996, 62(11): 4100-4107. doi: 10.1128/aem.62.11.4100-4107.1996 [27] 王海涛, 郑天凌, 杨小茹. 土壤反硝化的分子生态学研究进展及其影响因素[J]. 农业环境科学学报, 2013, 32(10): 1915-1924. doi: 10.11654/jaes.2013.10.003 [28] GAGNON V, MALTAIS-LANDRY G, PUIGAGUT J, et al. Treatment of hydroponics wastewater using constructed wetlands in winter conditions[J]. Water, Air, & Soil Pollution, 2010, 212(1): 483-490. [29] MATHESON F E, SUKIAS J P. Nitrate removal processes in a constructed wetland treating drainage from dairy pasture[J]. Ecological Engineering, 2010, 36(10): 1260-1265. doi: 10.1016/j.ecoleng.2010.05.005 [30] VYMAZAL J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience[J]. Environmental Science and Technology, 2011, 45(1): 61-69. doi: 10.1021/es101403q [31] 梁康, 常军军, 王飞华, 等. 垂直流人工湿地对尾水的净化效果及最佳水力负荷[J]. 湖泊科学, 2016, 28(1): 114-123. doi: 10.18307/2016.0113 [32] 洪亚军, 冯承莲, 徐祖信, 等. 重金属对水生生物的毒性效应机制研究进展[J]. 环境工程, 2019, 37(11): 1-9. [33] 尹哲慧. 浅析水生植物腐烂分解对水质的影响[J]. 生物技术世界, 2015(5): 20. [34] PENG, ZHOU, YIYONG, et al. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters[J]. Bioresource Technology, 2016, 218: 842-849. doi: 10.1016/j.biortech.2016.07.039 [35] 王琦, 赵骥, 但琼鹏, 等. 反硝化聚磷菌的培养富集及处理生活污水的稳定运行[J]. 化工学报, 2019, 70(12): 4828-4834. [36] MUSTAPHA H I, BRUGGEN J, LENS P. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria[J]. International Journal of Phytoremediation, 2018, 20(1): 44-53. doi: 10.1080/15226514.2017.1337062 [37] PEDESCOLL A, SIDRACH-CARDONA R, HIJOSA-VALSERO M, et al. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment[J]. Ecological Engineering, 2015, 80: 92-99. doi: 10.1016/j.ecoleng.2014.10.035 [38] GALLETTI A, VERLICCHI P, RANIERI E. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium[J]. Science of the Total Environment, 2010, 408(21): 5097-5105. doi: 10.1016/j.scitotenv.2010.07.045 [39] GUO X, CUI X, LI H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands[J]. Science of the Total Environment, 2019, 703: 134788. [40] 宋兆齐, 王莉, 刘秀花, 等. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 2015, 25(5): 481-436. doi: 10.16519/j.cnki.1004-311x.2015.05.0095 [41] CHOUARI R, Le PASLIER D, DAEGELEN P, et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environmental Microbiology, 2005, 7(8): 1104-1115. doi: 10.1111/j.1462-2920.2005.00795.x [42] QIU Z, ZHANG S, DING Y, et al. Comparison of Myriophyllum Spicatum and artificial plants on nutrients removal and microbial community in constructed wetlands receiving WWTPs effluents[J]. Bioresource Technology, 2021, 321: 124469. doi: 10.1016/j.biortech.2020.124469 [43] LI C, REN H, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156 [44] 侯素霞, 雷旭阳, 张辉, 等. 基于EEM与PCR-DGGE技术分析温度对蚯蚓堆肥处理城镇污泥的影响[J]. 生态环境学报, 2021, 30(5): 1060-1068. doi: 10.16258/j.cnki.1674-5906.2021.05.019 [45] LI L, HE C, JI G, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073 [46] ZHAO Y, CAO X, SONG X, et al. Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VF CWs)[J]. Bioresource Technology, 2018, 267: 608-617. doi: 10.1016/j.biortech.2018.07.072 [47] 王娟丽. 给水厂污泥改良生物滞留系统对氮磷去除的优化探究[D]. 北京: 北京建筑大学, 2019. [48] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463 [49] XU M, LIU W, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J]. Environmental Science and Pollution Research, 2016, 23(11): 10990-11001. doi: 10.1007/s11356-016-6181-8 [50] BELLINI M I, GUTIERREZ L, TARLERA S, et al. Isolation and functional analysis of denitrifies in an aquifer with high potential for denitrification[J]. Systematic and Applied Microbiology, 2013, 36(7): 505-516. doi: 10.1016/j.syapm.2013.07.001 [51] KANG Y, ZHANG J, XIE H, et al. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex[J]. Bioresource Technology, 2017, 224: 157-165. doi: 10.1016/j.biortech.2016.11.035 [52] JIA F, LAI C, CHEN L, et al. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater[J]. Chemosphere, 2017, 185: 1-10. doi: 10.1016/j.chemosphere.2017.06.132 [53] 蒋志云, 韦佳敏, 缪新年, 等. ABR-MBR工艺反硝化除磷微生物群落特征分析[J]. 环境工程学报, 2019, 13(7): 1653-1661. doi: 10.12030/j.cjee.201810005 [54] 刘思强, 信欣, 朱羽蒙, 等. 脱氮除磷功能菌泥强化低溶解氧ACF-BAF工艺处理猪场沼液效能及微生物种群分析[J]. 环境工程学报, 2022, 16(7): 2397-2407. doi: 10.12030/j.cjee.202201072 [55] 王亚东, 王少坡, 郑莎莎, 等. 生物除磷系统的聚磷微生物种群及其检测方法[J]. 环境工程, 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005 [56] 李慧, 刘丹丹, 陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性[J]. 环境工程, 2016, 34(4): 25-28. doi: 10.13205/j.hjgc.201604006 [57] 王文, 杨波, 代立春, 等. 滇池高效聚磷菌Rhodococcus sp. H的分离鉴定及除磷特性研究[J]. 安全与环境学报, 2020, 20(1): 216-224. [58] 段松青, 闫坤朋, 宋志文, 等. 基于不同填料的海水养殖系统的水质净化[J]. 环境工程学报, 2018, 12(8): 2210-2219. [59] HERRMANN M, OPITZ S, HARZER R, et al. Attached and suspended denitrifier communities in pristine limestone aquifers harbor high fractions of potential autotrophs oxidizing reduced iron and sulfur compounds[J]. Microbial Ecology, 2017, 74(2): 264-277. doi: 10.1007/s00248-017-0950-x [60] 韦佳敏, 刘文如, 程洁红, 等. 反硝化除磷的影响因素及聚磷菌与聚糖菌耦合新工艺的研究进展[J]. 化工进展, 2020, 39(11): 4608-4618. doi: 10.16085/j.issn.1000-6613.2020-0179 [61] PENG W, XZ A, YW A, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR+PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters[J]. Bioresource Technology, 2021, 327: 124795. doi: 10.1016/j.biortech.2021.124795 [62] JI J, PENG Y, LI X, et al. A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures[J]. Water Research, 2020, 175: 115690. doi: 10.1016/j.watres.2020.115690 [63] SAEED T, MIAH M J. Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: Media and flood-dry period ratio[J]. Chemical Engineering Journal, 2021, 411: 128507. doi: 10.1016/j.cej.2021.128507 [64] 沈舒婷, 耿卓凡, 李想, 等. 植物和基质在生态浮床去除农村地表径流氮磷中的作用[J]. 东南大学学报, 2022, 52(5): 933-942.