-
脱氮除磷是污水处理厂的重要任务。生物法脱氮除磷比物化法更具经济性和环保效益[1],但其运行条件更为严苛[1-3]。污水处理过程控制条件的不合理会降低有机物去除效率,以及脱氮和除磷效率,严重时会导致出水水质不达标。因此,为有效提高生物脱氮除磷工艺的处理效率,研究者对生物脱氮除磷工艺进行了不断改进,采取了诸如多点进水[4]、好氧池末端设置消氧区[5]、优化回流比设置[6]、精确曝气[7]、调整运行模式[8]、借助数学模型[9]等措施。污水处理属于非线性、强耦合复杂过程,而生物脱氮除磷的效率影响因素尤其多[10]。其中,由于碳源是微生物生长必须的营养元素,故其也是传统生物脱氮除磷工艺的控制因素。在污水处理过程中,碳源主要用于厌氧释磷、缺氧反硝化和异养菌代谢。然而,关于污水处理厂微生物生态系统中,碳源消耗量与生物脱氮除磷效率之间的关系研究较少,因此,对基于碳源储存的生物脱氮除磷效率调控方法研究对污水处理厂的运行优化有参考意义。
针对我国城市污水处理厂进水COD 低、碳氮比低的问题 [11],采用投加外碳源以促进生物脱氮除磷往往成为有效措施[12-13]。近年来,研究者在碳源种类对污泥产量影响[14-15]、低成本碳源开发[16]、外碳源投加方式[9]等方面进行了相关研究。然而,外加碳源在提供电子供体提高污水处理效率的同时,会增加碳足迹[17]。另外,在污水处理过程中投加外碳源,不仅增加直接运行成本,还会增加诸如投加泵能耗、污泥产量、污泥处理等延伸成本,这一点尚未引起重视。因此,从污水处理全流程角度出发,研究外加碳源的延伸成本有助于全面了解污水处理厂运行成本的内部构成。本研究以我国北方某改良型A2/O工艺为例,探讨碳源消耗量与TN、TP、耗电量之间的关系,并对外碳源投加引起的延伸成本进行分析,以期为城市污水A2/O工艺及其他常规工艺的调控优化提供参考。
基于碳源储存的污水生物脱氮除磷效率及污水处理系统延伸成本分析
Biological nitrogen and phosphorus removal efficiency of wastewater based on carbon source storage and cost analysis of sewage treatment system extension
-
摘要: 以我国北方某改良型A2/O工艺 (设计规模6×104 m3·d−1) 为例,基于一年的运行数据,考察碳源储存与生物脱氮除磷能力之间的关系,分析碳源利用效率和能耗情况。结果表明:在7—9月,系统碳源的综合利用效率为53%~55%,这说明消耗的碳源中超过50%比例用于生物脱氮除磷;反硝化菌较聚磷菌对环境的变化更敏感;外加碳源的延伸成本占直接成本的20.5%。因此,污水处理厂应充分考虑进出水水质及环境条件变化对碳源有效利用的影响。本研究结果可为减污降碳协同增效背景下城市污水处理厂A2/O工艺及其他常规工艺的优化调控提供参考。Abstract: Taking an improved A2/O process in northern China (with a design scale of 6×104 m3·d−1) as an example, the relationship between carbon source storage and biological nitrogen and phosphorus removal was investigated based on the operation data of a whole year, and the utilization efficiency of carbon source and energy consumption was analyzed. The results showed that from July to September, the comprehensive utilization efficiency of carbon source reached 53%~55%, which proved that more than 50% consumed carbon source was used for biological nitrogen and phosphorus removal. Denitrifying bacteria were more sensitive to environmental changes than phosphorus accumulating bacteria. The extension cost of additional carbon source accounted for 20.5% of the direct cost. It was pointed out that the sewage treatment plant should fully consider the influence of the change of inlet and outlet water quality and environmental conditions on the effective utilization of carbon sources, so as to provide technical guidance and reference for the regulation and operation of municipal wastewater treatment plant with A2/O process and other conventional processes.
-
表 1 A厂进水及出水的设计标准及实际进水水质情况
Table 1. Design criteria for designed influent and effluent and actual influent quality in A plant
运行数据类型 COD/ (mg·L−1) BOD5/ (mg·L−1) SS/(mg·L−1) NH4+-N/ (mg·L−1) TN/(mg·L−1) TP/(mg·L−1) COD/TN COD/TP 进水设计值 460 250 250 50 55 7 - - 出水设计值 ≤30 ≤6 ≤10 ≤1.5(2.5) ≤15 ≤0.3 - - 进水浓度范围 83~898 37~484 88~1 480 8~48 22~69 2.5~22.1 4.1~16.9 19~193 进水浓度平均值 298 152 307 31 41 5.9 6.6 52 注:12月1日至3月31日执行括号内排放限值。 表 2 外碳源延伸成本分析
Table 2. Analysis of extension cost of external carbon source
项目 直接成本 间接成本 碳源成本/
(元·kg−1)曝气能耗/
(元·kg−1)污泥处理费/
(元·kg−1)污泥处置费/
(元·kg−1)投加泵电耗/
(元·kg−1)人工费、水泵等
装置按年折算、
维护费等的比例小计/
(元·kg−1)数值 7.18 0.7 0.07 0.5 0.01 15% 1.47 说明 以乙酸钠含量25%液体 (市场价约每吨1 400元) 计,折合耗氧有机物 (以COD计) 为195 kg·t−1。 取本研究中全年
平均值
2 (kw·h)·kg−1
计,电费0.7元·(kW·h)−1。污泥产量的参数取自文献[24]。污泥从含水率98.8%降至80%计算。 按污泥处置费 (80%含水率) 200元·t−1计。 按常规隔膜泵考虑,功率
0.55 kW计。主要考虑加药泵、管路、配件等年折算、维修维护费用。 注:所有成本核算中涉及耗氧有机物的量均以COD换算。 -
[1] ZOU L Z, ZHOU M, LUO Z W, et al. Selection and synthesization of multi-carbon source composites to enhance simultaneous nitrification-denitrification in treating low C/N wastewater[J]. Chemosphere, 2022, 288: 132567. doi: 10.1016/j.chemosphere.2021.132567 [2] 柴蓓蓓, 曹锋锋, 鞠恺, 等. 不同碳源条件生物滤池深度脱氮效能及其经济性[J]. 水处理技术, 2021, 47(5): 83-88. [3] 司文曦, 李辰, 马庆. 污水处理厂强化生物脱氮措施探析[J]. 中国给水排水, 2015, 31(16): 21-25. [4] AGNE K B; NEVIN Y. Evaluation of sludge reduction in an oxic-settling-anoxic system operated with step feeding regime for nutrient removal and fed with real domestic wastewater[J]. Journal of Environmental Management, 2019, 243: 385-392. [5] 冯云刚, 张飞, 冯凯, 等. 消氧强化反硝化脱氮 AAO 生物池在合肥某污水厂的应用[J]. 中国给水排水, 2021, 37(14): 80-84. [6] WANG Q B, CHEN Q W. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39: 175-183. doi: 10.1016/j.jes.2015.10.012 [7] 谢小明. 精确曝气控制在污水处理厂中的应用和探索[J]. 中国给水排水, 2016, 32(6): 24-27. [8] 王启镔, 宫徽, 朱越, 等. SBR运行模式对市政污水脱氮除磷性能的影响分析[J]. 环境科学学报, 2020, 40(4): 1167-1173. [9] WANG Q B, CHEN Q W, CHEN J. Optimizing external carbon source addition in domestics wastewater treatment based on online sensoring data and a numerical model[J]. Water Science and Technology, 2017, 75(11): 2716-2725. doi: 10.2166/wst.2017.128 [10] 李子锋. 污水处理生物脱氮除磷影响因素及对策的研究[J]. 皮革制作与环保科技, 2021, 2(5): 101-102. [11] 王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. [12] FENG X C, BAO X, CHE L, et al. Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source[J]. Biochemical Engineering Journal, 2021, 165: 107811. doi: 10.1016/j.bej.2020.107811 [13] MANNINA G, CAPODICI M, COSENZA A, et al. Carbon and nutrient biological removal in a University of Cape Town membrane bioreactor: Analysis of a pilot plant operated under two different C/N ratios[J]. Chemical Engineering Journal, 2016, 296: 289-299. doi: 10.1016/j.cej.2016.03.114 [14] 陈浬, 周健, 窦艳艳. 碳源种类对原位生物解偶联污泥减量系统效能影响[J]. 环境工程学报, 2015, 9(3): 1131-1135. [15] 张怡芳, 吉芳英, 姜蕾. 固液碳源对反硝化脱氮及污泥产量影响研究[J]. 水处理技术, 2020, 46(4): 121-124,132. [16] 赵国强, 李亚, 武双, 等. 基于低成本碳源微生物合成聚羟基脂肪酸酯的研究进展[J]. 高分子通报, 2020(11): 22-30. [17] CANIANI D, CAIVANO M, PASCALE R, et al. CO2 and N2O from water resource recovery facilities: Evaluation of emissions from biological treatment, settling, disinfection, and receiving water body[J]. Science of the Total Environment, 2019, 648: 1130-1140. doi: 10.1016/j.scitotenv.2018.08.150 [18] 王启镔, 龚春辰, 魏彬, 等. 季节性气候变化下污水处理厂性能及污泥特性分析[J]. 给水排水, 2021, 47(3): 49-54. [19] 陈清. 污水处理厂进水水质变化对污染物去除效率的影响分析[J]. 水资源开发与管理, 2015(2): 80-84 [20] 王启镔, 李浩, 董旭, 等. 改良型 A2/O 污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. [21] JANSSEN P M J, MEINEMA K, VAN DER ROEST H F, 著. 祝贵兵, 彭永臻, 译. 生物除磷设计与运行手册[ M]. 北京: 中国建筑工业出版社, 2005. [22] GONG H, JIN Z Y, WANG Q B, et al. Effects of adsorbent cake layer on membrane fouling during hybrid coagulation/adsorption microfiltration for sewage organic recovery[J]. Chemical Engineering Journal, 2017, 317: 751-757. doi: 10.1016/j.cej.2017.02.122 [23] JING Z Y, GONG H, WANG K J. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery[J]. Journal of Hazardous Materials, 2015, 283: 824-831. doi: 10.1016/j.jhazmat.2014.10.038 [24] HENZE M, VAN L M C M, EKAMA A G B D. Biological wastewater treatment: Principles, modelling and design[M]. London: IWA publishing, 2008.