-
传统预处理系统通常由格栅、沉砂池及初沉池组成[1]。其中,格栅的最小去除尺寸一般为500 μm,沉砂池则被设计用于去除200 μm以上重质砂粒,无法有效去除轻质的渣及200 μm以下细砂[2]。初沉池对于悬浮物的去除效果较好,但出于节省碳源和占地的考虑,我国90%以上的污水处理厂未设置[3]。由于现有预处理系统设计标准较低,大量未被格栅、沉砂池拦截的砂渣穿透进入生化系统已成常态,造成了一系列问题,包括砂粒加剧设备磨损、砂渣挤占有效池容、活性污泥高浓度低活性、堵塞膜组件及生物膜填料等[4]。
强化改造预处理系统,将砂渣等难降解、不可降解杂质在预处理单元彻底分离,是解决上述问题并提升生化系统整体效能的有效措施,已成为我国预处理发展的重要方向之一[3]。目前,众多学者在强化除砂方面开展了大量研究工作,包括优化传统沉砂池、研发新型除砂工艺等[5-7],然而针对砂渣强化去除方面的相关研究却仍显不足。旋转式带式过滤器是一类在国外应用较为广泛的预处理设备,通过过滤原理可同步去除污水中砂渣杂质和悬浮固体,其配套的过滤筛网通过往复旋转实现自动清洁与动态过滤,筛网孔径通常在50~500 μm不等[8-9]。该设备从过滤孔径和机械结构上可被划分为微筛类预处理装备[1],在我国预处理砂渣强化去除方面有一定的应用潜力,但在国内并未得到广泛研究和应用[10]。
已有研究[4,11]表明,以贵阳、重庆等为代表的污水处理厂存在较为突出的砂渣问题。为此,本文以旋转式带式过滤器为研究对象,选取位于贵阳市的代表性污水处理厂,搭建了处理规模为4 000 m3·d−1的生产性实验装置,研究了其处理效果及相关的影响因素,核算了其提升生化系统效能的效果,考察了该设备支撑预处理系统强化改造的可行性。
旋转式带式过滤器强化生活污水预处理的评估优化
Evaluation and optimization of rotating belt filter for enhanced pretreatment of domestic sewage
-
摘要: 为探究适用于我国污水水质特点的强化预处理工艺,在贵阳某污水厂内搭建了旋转式带式过滤器生产性实验装置(4 000 m3·d−1)。针对实际生活污水,考察了其处理效果及相关的影响因素,核算了砂渣去除对生化系统效能提升的具体效果。结果表明:旋转式带式过滤器可同步去除污水中以砂渣为代表的惰性有机颗粒及无机颗粒,对粒径200 μm以上颗粒物的平均去除率达81.6%,预期可提升10%的活性污泥挥发性悬浮固体比例,降低8.4%的污泥产量及12.4%的混合液污泥浓度。过滤时间和水力负荷是影响处理效果的主要因素,当过滤时间大于5 s、水力负荷处于150~250 m·h−1时可取得较好的污染物去除效果。该设备可用于我国生活污水强化预处理,且适宜在较高转速下以机械过滤模式运行。Abstract: In order to explore the enhanced pretreatment process being applicable to the characteristics of sewage quality in China, a production test device (4 000 m3·d−1) of rotating belt filter (RBF) was built in a sewage plant in Guiyang. For the actual domestic sewage, the treatment efficiency and influencing factors of the RBF were investigated, and the specific effect of sand and slag removal on the improvement of biochemical system efficiency was calculated. The results showed that the RBF could simultaneously remove inert organic particles and inorganic particles represented by sand slag in sewage, and the average removal rate of particulates larger than 200μm could reach 81.6%. The RBF was expected to increase the proportion of volatile suspended solids in activated sludge by 10%, reduce the sludge production by 8.4% and the mixed liquor suspended solid by 12.4%. The filtering time and hydraulic load were the main factors affecting the treatment efficiency. When the filtering time was longer than 5s and the hydraulic load was between 150 m·h−1 and 250 m·h−1, a better performance on pollutions removal by the RBF could occur. The RBF can be used for the enhanced pretreatment of domestic sewage in China, and it is suitable to operate in the mechanical filtration mode at a higher speed.
-
表 1 旋转式带式过滤器对污染物的去除效果
Table 1. Pollutant removal efficiency by RBF
水样 SS/(mg·L−1) COD/(mg·L−1) ISS/(mg·L−1) 进水 201.3±89.1 141.5±49.2 101.6±35.1 出水 189.0±86.2 135.1±48.9 88.3±29.7 平均去除率/% 5.9 4.2 11.8 表 2 分离出的砂渣杂质有机物组分构成
Table 2. Organic matter composition of separated sand-slag impurities
有机物成分 含量/(g·kg-1) 占比/% 惰性颗粒性有机物Xl 294.42 77.63 慢速可降解颗粒性有机物Xs 84.76 22.35 (易降解+惰性)溶解性有机物S 0.061 0.02 表 3 旋转式带式过滤器对生化系统进水的改善情况
Table 3. Improvement of RBF influent of biochemical system
旋转式带式过滤器进出水 CSS,inf /(mg·L−1) S0 /(mg·L−1) α αNV 进水 201.3 70.0 0.50 0.322) 出水 189.0 67.11) 0.59 0.283) 注:1)去除率以COD平均去除率4.2%计;2)测试得到进水所含慢速可降解颗粒性有机物Xs为48 mg·L−1,惰性颗粒性有机物Xl为23 mg·L−1,对应αNV为0.32;3)实验得到旋转式带式过滤器Xs去除量为1.3 mg·L−1,Xl去除量为4.5 mg·L−1,计算得到αNV为0.28。 -
[1] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater Engineering: Treatment and Reuse(Fourth Edition)[M]. McGraw-Hill, 2005. [2] 曹业始, 郑兴灿, 刘智晓, 等. 中国城市污水处理的瓶颈、缘由及可能的解决方案[J]. 北京工业大学学报, 2021, 47(11): 1292-1302. doi: 10.11936/bjutxb2020040009 [3] 王洪臣. 关注城镇污水处理厂运营困境, 共同探寻破解之道[J]. 给水排水, 2019, 45(9): 1-3. [4] 吉芳英, 来铭笙, 何莉, 等. 细微泥沙粒径对活性污泥产率的影响及其计算公式[J]. 环境工程学报, 2016, 10(4): 1627-1632. doi: 10.12030/j.cjee.20160408 [5] 李佟, 崔春玥, 郝凤玲, 等. 曝气沉砂池除砂效果分析与优化研究[J]. 给水排水, 2017, 43(2): 45-48. doi: 10.3969/j.issn.1002-8471.2017.02.010 [6] 尹雷, 刘艇, 周文政, 等. 新型水力旋流除砂设备在西安市某污水厂的运行情况研究[J]. 节能与环保, 2021: 92-94. doi: 10.3969/j.issn.1009-539X.2021.05.035 [7] 侯锋. 地下式污水处理厂关键技术研究与工程实践[D]. 北京: 清华大学, 2017. [8] ODEGARRD H. Optimised particle separation in the primary step of wastewater treatment[J]. Water Science & Technology, 1998, 37(37): 43-53. [9] RUSTEN B, ODEGAARD H. Evaluation and testing of fine mesh sieve technologies for primary treatment of municipal wastewater[J]. Water Science & Technology, 2006, 54(10): 31-38. [10] 岳耀冬, 李军, 王昌稳, 等. 旋转带式预滤机除砂试验研究[J]. 中国给水排水, 2016, 3(23): 72-75. doi: 10.19853/j.zgjsps.1000-4602.2016.23.017 [11] 吉芳英, 周峰, 范剑平, 等. 降雨过程对污水处理厂无机颗粒物特性及活性污泥的影响[J]. 环境工程学报, 2016, 10(9): 4643-4648. doi: 10.12030/j.cjee.201601129 [12] MANSOUR-GEOFFRION M, DOLD P L, LAMARRE D, et al. Characterizing hydrocyclone performance for grit removal from wastewater treatment activated sludge plants[J]. Minerals Engineering, 2010, 23(4): 359-364. doi: 10.1016/j.mineng.2009.08.001 [13] LAGUNA A, OUATTARA A, GONZALEZ R O, et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge[J]. Water Science & Technology, 1999, 40(8): 1-8. [14] HE P J, LU F, ZHANG H, et al. Sewage sludge in China: Challenges toward a sustainable future[J]. Water Practice and Technology, 2007, 2(4): 83-90. [15] MSPERANDIO M, ETIENNE P. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various So/Xo ratios[J]. Water Research, 2000, 34(4): 1233-1246. doi: 10.1016/S0043-1354(99)00241-9 [16] 柏小家. BioWin模拟软件在污水处理厂运行过程中的优化研究[D]. 昆明: 昆明理工大学, 2016. [17] RUSTEN B, RAZAFIMANANTSOA V A, ANDRIAMIARINJAKA M A, et al. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors[J]. Water Science & Technology, 2016, 73(2): 337-344. [18] RAZAFIMANANTSOA V A, YDSTEB L, BILSTAD T, et al. Effect of selective organic fractions on denitrification rates using Salsnes Filter as primary treatment[J]. Water Science & Technology, 2014, 69(9): 1942-1948. [19] RUSTEN B, RATHNAWEERA S S, RISMYHR E, et al. Rotating belt sieves for primary treatment, chemically enhanced primary treatment and secondary solids separation[J]. Water Science & Technology, 2017, 75(11): 2598-2606. [20] 德国水资源、污水与固废管理协会. 一段式活性污泥法工艺设计规范(ATV-DVWK-A 131)[M]. 姚刚, 庞洪涛, 施汉昌, 译. 北京: 清华大学出版社, 2021. [21] 刘紫威. 利用ASM1模型分析进水颗粒无机物对污水厂运行的影响[D]. 扬州: 扬州大学, 2021.