-
石油开采、运输以及贮存过程均会产生油田采出水,其具有含油量大、悬浮固体浓度高、有机物种类复杂[1-2]等特点。油田采出水处理处置不当会破坏生态环境并对人类健康造成巨大危害。对油田采出水进行深度处理,达到回注标准后回注,则既可避免油田采出水进入环境危害生物,也可避免水资源的大量浪费,因而成为近年来油田采出水处理处置领域的研究热点。
传统含油废水处理工艺一般有气浮、离子交换、吸附、混凝等[3-5]。然而由于油田采出水中乳化油的稳定状态,传统方法处理油田采出水达到回注标准难度大,往往需做进一步的精细处理。随着膜法水处理技术的发展,利用膜分离技术处理含油废水近年来应用日益广泛。利用膜技术处理油田采出水具有分离效果好、药剂投加量少、出水水质稳定、易于实现自动化控制等优点[6-8]。相较于有机膜,陶瓷膜以其强度高、耐腐蚀、耐高温、热稳定性好等特性[9-12],在膜技术处理油田采出水领域展现出更大的优势,但陶瓷膜处理油田采出水过程中,膜污染问题依然存在。由于油田采出水水质的复杂性,陶瓷膜过滤一段时间后会形成污垢,堵塞膜孔,导致过滤压力增大,膜通量下降,产水量降低[13-15],给陶瓷膜在油田采出水处理工程中的大规模应用造成了阻碍。合理优化陶瓷膜处理油田采出水系统运行控制工况,明确陶瓷膜处理油田采出水过程膜污染机理,开发更为高效的膜污染控制方法已成为陶瓷膜处理油田采出水领域亟待解决的关键问题。
本研究针对陶瓷膜处理油田采出水过程中存在的膜污染机理不明晰的问题,构建了陶瓷膜反应器,处理两级过滤后的实际油田采出水。通过四因素三水平正交实验,筛选出膜污染控制效果最优的运行控制工况。结合微观表征和膜阻力分析等手段,确定了造成陶瓷膜污染的主要污染物,揭示了油粒对陶瓷膜污染的微观机理,可为陶瓷膜在油田采出水处理及回用领域的推广应用提供参考。
平板陶瓷膜处理油田采出水运行控制优化及膜污染机理
Operation control optimization and membrane fouling mechanism of flat-sheet ceramic membrane treating oilfield produced water
-
摘要: 陶瓷膜凭借其机械强度高、化学稳定性好等优点,近年来在油田采出水处理领域得到了广泛的应用。针对陶瓷膜处理油田采出水膜污染控制这一核心问题,采用小试实验与模型分析相结合的方法,深入开展了陶瓷膜处理系统运行控制优化的研究,结合微观表征,阐明了陶瓷膜处理油田采出水膜污染机理。结果表明,陶瓷膜处理油田采出水最佳运行控制工况为:初始膜通量80 L·(m2·h)−1,过滤时间10 min,反冲洗时间30 s,曝气强度3 L·min−1;此条件下陶瓷膜可保持平均膜通量27.82 L·(m2·h)−1。原水和污染层的表征结果表明,胺类或酰胺类、烃类、羧酸类、芳香族、醇类等有机物化合物是造成陶瓷膜污染的主要有机物,Si、Fe、Ca、Mg、Ba等无机盐离子也是膜污染的重要组成部分;过滤过程中膜孔内阻力和凝胶层阻力对陶瓷膜膜污染形成起主导作用。Abstract: Ceramic membrane has been widely used in the field of oilfield produced water treatment in recent years because of its high mechanical strength, good chemical stability and other advantages. Aiming at the core issue of membrane pollution control in oilfield produced water treatment by ceramic membrane, the small-scale experiment and model analysis were used to deeply conduct the optimization research on the operation control of ceramic membrane treatment system. Combined with microscopic characterization, the membrane pollution mechanism in oilfield produced water treatment by ceramic membrane was clarified. The results showed that the optimal operating control conditions for oilfield produced water treatment by ceramic membrane were: initial membrane flux of 80 L·(m2·h)−1, filtering time of 10 min, backwashing time of 30 s, aeration intensity of 3 L·min−1. Under above conditions, the ceramic membrane could maintain an average membrane flux of 27.82 L·(m2·h)−1. The characterization results of raw water and pollution layer showed that amine or amide, hydrocarbon, carboxylic acid, aromatic, alcohol and other organic compounds were the main organics causing ceramic membrane pollution, and inorganic salt ions such as Si, Fe, Ca, Mg, Ba were also important components of membrane pollution; In the filtration process, both the resistances in the membrane pore and in the gel layer play a leading role in the formation of ceramic membrane fouling.
-
表 1 L9(34)正交实验设计表
Table 1. L9 (34) orthogonal experimental design
工况 因素 初始膜通量/
(L·(m2·h)−1)过滤时间/
min水力反冲
时间/s曝气强度/
(L·min−1)S1 30 10 60 1 S2 30 15 90 3 S3 30 20 30 5 S4 50 10 90 5 S5 50 15 30 1 S6 50 20 60 3 S7 80 10 30 3 S8 80 15 60 5 S9 80 20 90 1 表 2 运行控制因素方差分析表
Table 2. Analysis of variance of operating control factors
源 Ⅲ型平方和 df 均方 F Sig 修正模型 80.025a 8 10.003 15.956 1.83×10-4 截距 8986.489 1 8986.489 14334.423 3.07×10-7 初始膜通量 32.935 2 16.467 26.267 1.75×10-4 过滤时间 19.164 2 9.582 15.284 1.276×10-3 水力反冲时间 24.424 2 12.212 19.479 5.37×10-4 曝气强度 3.502 2 1.751 2.793 1.3836×10-2 误差 5.642 9 0.627 总计 9072.156 18 修正后总计 85.667 17 *注:R2=0.934(调整R2=0.876)。 表 3 单因素统计量
Table 3. Statistical analysis of average membrane fluxes corresponding to the operating control factors
运行控制因素 因素水平 各因素水平对应的平均膜通量统计值 算数平均值/ L·(m2·h)−1 标准误差 95%置信区间下限 95%置信区间上限 >初始膜通量 30.00 L·(m2·h)−1 22.675 0.323 21.944 23.406 50.00 L·(m2·h)−1 20.547 0.323 19.815 21.278 80.00 L·(m2·h)−1 23.810 0.323 23.079 24.541 过滤时间 10.00 min 23.787 0.323 23.055 24.518 15.00 min 21.812 0.323 21.080 22.543 20.00 min 21.433 0.323 20.702 22.165 水力反冲时间 30.00 s 23.185 0.323 22.454 23.916 60.00 s 20.697 0.323 19.965 21.428 90.00 s 23.150 0.323 22.419 23.881 曝气强度 1.00 L·min−1 21.733 0.323 21.002 22.465 3.00 L·min−1 22.760 0.323 22.029 23.491 5.00 L·min−1 22.538 0.323 21.807 23.270 表 4 原水和污染层的元素质量百分比
Table 4. Mass percentage of elements in raw water and contaminated layer
元素 元素质量百分比/% 原水 污染层 C 33.46 30.30 O 3.69 19.74 Cl 39.28 0.35 Si 0.03 0.46 N 0 0 K 0.35 0.07 Mg 0.63 0.14 Ca 1.56 0.80 Ba 0.27 37.00 Na 20.71 0.53 S 0.02 6.43 Fe 0 3.86 表 5 各部分污染阻力及所占比例的平均值
Table 5. Pollution resistance of each part and its average proportion
Rt
/(1011·m−1)比例
/%Rm
/(1011·m−1)比例
/%Ri
/(1011·m−1)比例
/%Rc
/(1011·m−1)比例
/%Rg
/(1011·m−1)比例
/%12.62 100.00 3.09 24.53 5.01 39.70 1.03 8.13 3.50 27.70 -
[1] 张华倩, 胡天宇. 分析油田采出水的特性及处理技术[J]. 中国石油和化工标准与质量, 2013, 33(8): 108. doi: 10.3969/j.issn.1673-4076.2013.08.105 [2] 刘长莉, 王宝鑫, 李娜, 等. 弱碱三元采出水ABR生物处理工艺研究[J]. 环境科学与技术, 2015, 38(S1): 198-204. [3] 高飞, 朱俊维, 曾凡震. 简述油田污水处理面临的问题及处理技术[J]. 石化技术, 2020, 27(7): 82-83. doi: 10.3969/j.issn.1006-0235.2020.07.046 [4] LI X, JIA Y, QIN Y, et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms[J]. Chemosphere, 2021, 278: 130483. doi: 10.1016/j.chemosphere.2021.130483 [5] MA D, YI H, LAI C, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. doi: 10.1016/j.chemosphere.2021.130104 [6] Fulazzaky M, Setiadi T, Fulazzaky M A. An evaluation of the oilfield-produced water treatment by the membrane bioreactor[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104417. doi: 10.1016/j.jece.2020.104417 [7] PADAKI M, SURYA MURALI R, ABDULLAH M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357: 197-207. doi: 10.1016/j.desal.2014.11.023 [8] PABBY A K, SASTRE A M. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes[J]. Journal of Membrane Science, 2013, 430: 263-303. doi: 10.1016/j.memsci.2012.11.060 [9] 王浩, 王宁, 李杰. 简析陶瓷膜的发展和应用[J]. 山东陶瓷, 2020, 43(6): 15-18. doi: 10.3969/j.issn.1005-0639.2020.06.004 [10] 张勇, 秦玉兰, 樊晓丽, 等. 平板陶瓷膜MBR工艺在农村污水处理中的应用[J]. 中国给水排水, 2021, 37(10): 120-125. [11] 张诗洋, 单历元, 廖松义, 等. 陶瓷膜在废水处理领域中的研究进展[J]. 工业水处理, 2021, 41(4): 31-36. [12] HE Z, LYU Z, GU Q, et al. Ceramic-based membranes for water and wastewater treatment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 578: 123513. doi: 10.1016/j.colsurfa.2019.05.074 [13] 张瑞君. 纳滤对聚驱采油废水的处理效能及膜污染研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [14] 冯晓娜, 熊若晗, 马文结, 等. 陶瓷超滤膜分离水中天然有机物的膜污染研究[J]. 给水排水, 2020, 56(S2): 136-141. doi: 10.13789/j.cnki.wwe1964.2020.S2.021 [15] ALRESHEEDI M T, BASU O D. Effects of feed water temperature on irreversible fouling of ceramic ultrafiltration membranes[J]. Journal of Water Process Engineering, 2019, 31: 100883. doi: 10.1016/j.jwpe.2019.100883 [16] BAI Z, ZHANG R, WANG S, et al. Membrane fouling behaviors of ceramic hollow fiber microfiltration (MF) membranes by typical organic matters[J]. Separation and Purification Technology, 2021, 274: 118951. doi: 10.1016/j.seppur.2021.118951 [17] 贾秀粉, 郭赟, 孙霞. 陶瓷超滤膜在含油废水处理中的应用及改造[J]. 节能, 2020, 39(6): 136-138. [18] ALRESHEEDI M T, BARBEAU B, BASU O D. Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment[J]. Separation and Purification Technology, 2019, 209: 452-460. doi: 10.1016/j.seppur.2018.07.070 [19] NINOMIYA Y, KIMURA K, SATO T, et al. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: Tests with real domestic wastewater under low-temperature conditions[J]. Water Research, 2020, 181: 115881. doi: 10.1016/j.watres.2020.115881 [20] TANUDJAJA H J, HEJASE C A, TARABARA V V, et al. Membrane-based separation for oily wastewater: A practical perspective[J]. Water Research, 2019, 156: 347-365. doi: 10.1016/j.watres.2019.03.021 [21] 应智霞, 施陈, 邹志文. 3种常见统计软件在生物统计学教学中的应用比较——以配对数据t-检验为例[J]. 安徽农学通报, 2021, 27(13): 197-199. doi: 10.3969/j.issn.1007-7731.2021.13.067 [22] 赵慧琴, 石立, 刘金山, 等. SPSS软件计算主成分分析的缺陷与纠正[J]. 统计与决策, 2020, 36(15): 56-59. doi: 10.13546/j.cnki.tjyjc.2020.15.011 [23] 赵慧琴, 朱建平. 如何用SPSS软件计算因子分析应用结果[J]. 统计与决策, 2019, 35(20): 72-77. doi: 10.13546/j.cnki.tjyjc.2019.20.015