-
甲醛作为主要室内空气污染物[1],其来源主要为装修过程中使用的含有粘合剂的人造板材、劣质油漆和地毯等的缓慢释放[2]。控制室内低浓度甲醛的途径有2种 [3]:一是源头控制,如使用环保材料以降低室内空气中甲醛浓度;二是末端治理,即去除空气中游离的甲醛气体。催化氧化法被认为是最为有效的吸附处理技术,包括常温催化氧化和光催化氧化技术,具有脱除效率高、无二次污染等优点,可将HCHO直接转化为CO2和H2O[4],其核心在于研制出能在低温潮湿环境下高效催化氧化甲醛的催化剂。
二氧化钛(TiO2)为最常用的半导体材料,具有较高的太阳光敏感性、化学稳定性和低毒性等优点[5],且TiO2的高能带态密度能实现高效的光电流转换,使得其比ZnO、SnO2、ZrO2、CdS和g-C3N4等半导体材料具有更高的氧化活性[6],可在紫外光激发下生成强氧化性的羟基自由基(·OH)和超氧阴离子自由基(·O2−)等[7-8]。然而,TiO2仅能吸收紫外光,无法吸收更多的可见光,且较低的电子转移率和较高的光致电子与空穴复合率亦会严重影响整体量子产率。通常采用2种解决策略:一是将TiO2辐射吸收范围扩展到可见光区域;二是抑制激发电子和正空穴的复合[9]。为此需要对TiO2光催化剂进行改性,如贵金属沉积[10],半导体耦合[11]等。TiO2与半导体Bi2O3耦合[12]亦可将吸收光谱扩展到可见光区域,显著增强光催化氧化活性 [13]。掺杂的Bi离子以化合物形式部分取代了一些钛原子形成的锐钛矿TiO2呈现出更大的可见光偏移,且Bi和Y共掺杂致使光生空穴和电子的复合速率降低,有利于促进催化剂氧化性能[14]。但由于Bi2O3-TiO2受光照条件限制,且Bi2O3和TiO2亦可作为光生电子和空穴的复合中心而降低其氧化性能。
锰基催化剂为一种高效、深度的常温催化氧化催化剂。隐钾锰矿型和水钠锰矿型氧化锰中存在多种价态的锰,易相互转化,使得氧化锰具有较高的催化氧化活性[15],但锰基催化剂亦会出现结晶性差、易团聚、易失活等现象,会直接影响催化剂稳定性和再生活性[16]。结构型、电子型CeO2助催化剂有较强的储氧能力[17],可在高空速条件下为氧化反应提供充足的氧,并借助Ce4+/Ce3+离子偶的Redox循环,有效改善活性位点间的电子传递。易变价的Ce又导致晶界处存在各种非化学计量缺陷,因在混合氧化物存在下易形成更多的晶格缺陷,增加活性位点。TANG等[18-19]通过改进的共沉淀方法制备了一系列MnOx-CeO2催化剂,在100 ℃反应温度下实现了100%的HCHO降解。这是通过氧转移机制有效激活分子氧,MnOx-CeO2固溶体的形成致使氧化锰具有更高的氧化状态,且表面更丰富的晶格氧物种对低温催化氧化甲醛发挥着至关重要的作用。ZHANG等[20]采用溶胶-凝胶柠檬酸法制备了一系列高效的MnOx-Co3O4-CeO2三效催化剂,当三者摩尔比为16∶19∶1,反应温度为100 ℃时,催化剂展示出对HCHO的最佳去除效率,但MnOx-CeO2存在稳定性差,一段时间后可能由于大量吸附空气中水蒸气致使HCHO去除效率大幅降低,且显示室温下氧化锰表现为HCHO的氧化物,而非催化剂[21]。
本研究以常温催化氧化性能的MnCeOx氧化物为载体,起到吸附和常温催化作用,以具有可见光催化氧化性能的Bi3+-TiO2为活性组分,采用不同制备方法研制Bi3+-TiO2与MnCeOx相耦合的可见光光热协同催化氧化催化剂,以实现光生电子和活性氧物种(O2−, O−, ·OH )的转移与氧化,同时利用MnOx-CeO2的黑色组分吸光促使Bi3+-TiO2光催化性能提升或升高温度进而提升其常温催化氧化性能,并探索制备方法、负载量、组分配比以及结构形貌等对催化剂性能的影响,研究考察Bi3+-TiO2/MnCeOx耦合情况下的催化氧化性能及可能机理,以期为低浓度HCHO治理提供参考。
光催化耦合常温催化氧化HCHO的Bi3+-TiO2/MnCeOx催化剂性能
Catalytic oxidation of HCHO over Bi3+-TiO2/MnCeOx catalyst based on photocatalytic coupled catalytic oxidation at ambient temperature
-
摘要: 常用净化室内挥发性有机物(VOCs)的方法主要有吸附、低温等离子体、光催化氧化、常温催化氧化等,而鲜有基于光催化耦合常温催化催化剂的报道。以具备常温催化氧化性能的MnCeOx为载体,以具有可见光催化性能的Bi3+-TiO2为活性组分,考察负载量、煅烧温度、制备方法以及结构形态等对Bi3+-TiO2/MnCeOx催化氧化甲醛(HCHO)性能的影响,并利用XRD、BET、SEM、TEM、UV-vis DRS和IR等技术对催化剂进行微观表征与分析。结果表明,催化剂表观结构形态、晶型、粒径、孔道、掺杂、可见光吸收及抗水性为Bi3+-TiO2/MnCeOx氧化性能提升提供了必要条件,两者间的多重协同耦合作用是核心,其中采用浸渍法所制的负载量10.0%Bi3+-TiO2/MnCeOx(550 ℃)表现最佳,48 h催化降解率高达93.4%,其HCHO浓度低于室内控制标准(GB50325-2001),且稳定性良好。本研究结果可为室内HCHO高效控制耦合光催化和常温催化技术提供参考。Abstract: The common methods for removing indoor volatile organic compounds (VOCs) mainly included adsorption, low-temperature plasma, photocatalytic oxidation, catalytic oxidation at ambient temperature, etc. However, there are few research reports based on the combination of photocatalytic oxidation and catalytic oxidation at ambient temperature. In this paper, MnCeOx were used as supports to catalytic oxidation of formaldehyde at ambient temperature, and Bi3+-TiO2 as the active component were utilized to photocatalytic performance under visible light. The effects of supporting, calcination temperature, preparation method and structure on the performance of formaldehyde (HCHO) oxidation were investigated, and their physicochemical properties were characterized by XRD, BET, SEM, TEM, UV-vis DRS and IR. The results exihibited that the apparent structural morphology, crystal type, particle size, pore, doping, absorption under visible light and water resistance provided the necessary conditions, and the potentially synergistic multiple effect of Bi3+-TiO2 and MnCeOx was the critical factor for improving the performance of Bi3+-TiO2/MnCeOx. Among them, 10.0% Bi3+-TiO2/MnCeOx (550 ℃) prepared by the impregnation method exhibited the highest activity and stability, and the degradation rate was as high as 93.4% at 48 h. Finally, the concentration of HCHO was lower than the indoor control standard (GB50325-2001). The synergistic effects are responsible for the enhanced indoor HCHO removing and it provides some reference for the research.
-
表 1 部分样品比表面积及孔容孔径
Table 1. Physical properties of these catalysts in the orthogonal experiment
样品名称 比表面积/
(m2·g−1)孔体积/
(cm3·g−1)平均
孔径/nmBi3+-TiO2 27.3 0.07 6.73 MnCeOx 87.0 0.21 38.9 1.0% Bi3+-TiO2/MnCeOx 63.4 0.334 15.3 10.0% Bi3+-TiO2/MnCeOx 54.0 0.235 13.3 20.0%Bi3+-TiO2/MnCeOx 84.4 0.112 3.88 -
[1] SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. doi: 10.1021/cr800399g [2] 李省吾, 吴晓航, 黄荣珠, 林建标. 室内空气中甲醛污染去除技术进展研究[J]. 广东化工, 2022, 49(8): 148-149. doi: 10.3969/j.issn.1007-1865.2022.08.047 [3] 徐倩, 曲振平. 介孔氧化硅材料负载Au、Ag催化剂及其甲醛催化氧化性能研究[D]. 大连: 大连理工大学, 2021. [4] 关圣楠, 张琦. 锰基催化剂催化氧化甲醛脱除的研究[D]. 合肥: 中国科学技术大学, 2021. [5] ZHANG G X, SUN Z M, DUAN Y W, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. doi: 10.1016/j.apsusc.2017.03.198 [6] LI X, QIAN X R, AN X H, et al. Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde[J]. Applied Surface Science, 2019, 487: 1262-1270. doi: 10.1016/j.apsusc.2019.05.195 [7] ZHANG G K, XIONG Q, WEI X, et al. Synthesis of bicrystalline TiO2 supported sepiolite fibers and their photocatalytic activity for degradation of gaseous formaldehyde[J]. Applied Clay Science, 2014, 102: 231-237. doi: 10.1016/j.clay.2014.10.001 [8] MALAYERI M, HAGHIGHAT F, LEE C S. Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: A review[J]. Building and Environment, 2019, 154: 309-323. doi: 10.1016/j.buildenv.2019.02.023 [9] YANG Y, LI X J, CHEN J T, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(3): 517-522. doi: 10.1016/j.jphotochem.2004.02.008 [10] PAN X Y, XU Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light[J]. The Journal of Physical Chemistry C, 2013, 117(35): 17996-18005. doi: 10.1021/jp4064802 [11] LI J, ZHANG M, LI Q Y, et al. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst[J]. Applied Surface Science, 2017, 391: 184-193. doi: 10.1016/j.apsusc.2016.06.145 [12] HUANG Q, WANG P, FAN Y Z, et al. Synthesis and photocatalytic activity of N-doped BixTi1-xO2 photocatalysts under energy saving lamp illumination[J]. Indoor and Built Environment, 2017, 26(6): 785-795. doi: 10.1177/1420326X16641177 [13] HUANG Y F, WEI Y L, WANG J, et al. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance[J]. Applied Surface Science, 2017, 423: 119-130. doi: 10.1016/j.apsusc.2017.06.158 [14] HAMDI A, FERRARIA A M, BOTELHO DO REGO A M, et al. Bi–Y doped and co-doped TiO2 nanoparticles: Characterization and photocatalytic activity under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2013, 380: 34-42. doi: 10.1016/j.molcata.2013.09.005 [15] TIAN H, HE J H, ZHANG X D, et al. Facile synthesis of Porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 118-122. [16] 何小云, 葛笑, 宋留名, 等. 室温下MnOx/HZSM-5催化氧化甲醛的性能和机理分析[J]. 材料工程, 2021, 49(1): 144-152. [17] YANG P, YANG S S, SHI Z N, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2015, 162: 227-235. doi: 10.1016/j.apcatb.2014.06.048 [18] TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcinations temperature[J]. Applied Catalysis B:Environmental, 2006, 62(3/4): 265-273. [19] TANG X F, CHEN J L, HUANG X M, et al. Pt/MnOx CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2008, 81(1/2): 115-121. [20] ZHANG Y, CHEN M X, ZHANG Z X, et al. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution[J]. Catalysis Today, 2019, 327: 323-333. doi: 10.1016/j.cattod.2018.04.027 [21] SEKINE Y, NISHIMURA A. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmospheric Environment, 2001, 35(11): 2001-2007. doi: 10.1016/S1352-2310(00)00465-9 [22] 陶涛, 肖瑶, 胡宇欣, 等. MnCeOx/凹凸棒土催化剂的制备、表征及常温催化氧化性能[J]. 功能材料, 2020, 12(51): 12001-12008. [23] WANG T, YAN X Q, ZHAO S S, et al. Preparation, characterization and photocatalytic activity of three-dimensionally ordered mesoporous /macroporous TiO2 microspheres[J]. Journal of Molecular Catalysis, 2014, 28(4): 359-366. [24] 黄琼, 白梦天, 任超, 等. Mn基金属氧化物催化剂常温催化氧化甲醛[J]. 中国环境科学, 2018, 38(1): 103-111. doi: 10.3969/j.issn.1000-6923.2018.01.013 [25] LI H J, QI G S, TAN A, et al. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide[J]. Applied Catalysis B:Environmental, 2011, 103(1/2): 54-61. [26] HUANG Q, YE J, SI H, et al. Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light[J]. Catalysis Letters, 2020, 150: 1098-1110. doi: 10.1007/s10562-019-03017-w [27] 朱立才, 袁中直, 李伟善. 现场紫外-可见吸收光谱研究电解二氧化锰的还原过程[J]. 电化学, 2004, 10(2): 168-174. doi: 10.13208/j.electrochem.2004.02.008 [28] CHEN B B, SHI C, CROKER M, et al. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Applied Catalysis B: Environmental, 2013, 132–133: 245-255. [29] 庞光龙. MnOx基催化剂上甲醛室温催化氧化反应的研究 [D]. 北京: 北京理工大学, 2015. [30] 朱杰, 孙月吟, 顾名扬, 等. TiO2负载MnFeOx催化剂的制备及常温催化氧化甲醛性能研究[J]. 功能材料, 2022, 53(4): 4011-4019. [31] LIU F, RONG S P, ZHANG P Y, et al. One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature[J]. Applied Catalysis B:Environmental, 2018, 235: 158-167. doi: 10.1016/j.apcatb.2018.04.078 [32] SUN D, WAGEH S, Al-GHAMDI A A, et al. Pt/C@MnO2 Composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature[J]. Applied Surface Science, 2019, 466: 301-308. doi: 10.1016/j.apsusc.2018.10.044 [33] 李妍, 张舸, 蒋贞. 锐钛矿型TiO2吸附甲醛影响因素的模拟与实验研究[J]. 现代化工, 2019, 39(4): 207-210. [34] 段宝庆, 丁雅萍, 陈英文等. 铈基催化剂上CVOCs催化研究进展[J]. 现代化工, 2017, 37(12): 24-27. doi: 10.16606/j.cnki.issn0253-4320.2017.12.006 [35] 张萍, 许丽, 王莉. 水热法合成二氧化钛纳米管的晶型与形貌控制的研究[J]. 当代化工, 2018, 47(5): 893-896. doi: 10.13840/j.cnki.cn21-1457/tq.2018.05.005 [36] YUAN Z Y, SU B L. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 241(3): 173-183. [37] 赵红花, 马树平. 负载型 TiO2光催化降解含酚废水的研究[J]. 兰州理工大学学报, 2007, 33(1): 74-78. [38] 朱杰. MnFeOx氧化物催化剂常温催化氧化低浓度HCHO性能研究[D]. 南京: 南京信息工程大学, 2022.