-
对氯苯酚(4-chlorophenol, 4-CP)是一种具有高生物毒性且化学性质稳定的化工中间体[1]。欧洲环境署(European Environment Agency, ECA)已将氯酚列为优先控制污染物[2]。排入纸浆厂废水的加拿大苏必利尔湖中被检测到二氯酚和三氯酚的质量浓度分别为4 mg·L−1和13 mg·L−1,对水生生物毒性大。然而,现有的工业废水处理工艺(膜生物反应器工艺、离子交换法和膜分离法等)难以完全去除废水中的氯酚类污染物,会导致其随尾水流入自然环境中[3]。
人工湿地-微生物燃料电池(constructed wetland-microbial fuel cell, CW-MFC)作为一种将人工湿地(constructed wetland, CW)和微生物燃料电池(microbial fuel cell, MFC)相结合的新兴技术,其内部存在自然的氧化还原条件,能够利用MFC产生的电能以提高难降解有机物的去除效率[4]。有研究表明,CW-MFC对有机印染废水[5-7]、抗生素废水[8]和养殖废水[9-10]等均表现出良好的净化效果。YADAV等[11]首次将设计的单舱室CW-MFC应用于亚甲基蓝废水的治理,亚甲基蓝的去除率可达93.15%且具有15.73 mW·m−2的输出功率密度。为了进一步突破CW-MFC产电性能低的瓶颈,并且提升CW-MFC对化学需氧量(chemical oxygen demand, COD)、总氮(total nitrogen, TN)和氨氮(ammonia nitrogen, NH4+-N)等污染物的净化效果,研究者通过对反应器构型进行了改造升级,设计并探究了多种CW-MFC物理构型,包括堆叠构型(stacked CW-MFC)[12-13]、多级构型(multi-stage CW-MFC)[14-15]和模块化构型(modular CW-MFC)[16]对产电性能与污染物去除效果的影响。XU等[12]在分层连续流CW的基础上,创造了堆叠构型CW-MFC,其COD去除率为88.7%。有研究[17]表明,两极串联的CW-MFC比单一CW具有更高的污染物去除效果以及标准化能量回收率。REN等[14]将适用于高强度废水处理的垂直流CW和水平流CW与MFC分别耦合串联,构建了多极构型CW-MFC,COD、氨氮和总氮去除率分别为72%、59%和47%。TAMTA等[16]为减少土地占用面积并提高发电量,设计了模块化CW-MFC反应器用于处理高负荷(初始COD和NH4+-N分别为3 200 mg·L−1和30.21 mg·L−1)生活污水,COD和NH4+-N的去除率分别为98.5%和90.4%。
李氏禾(Leersia Hexandra Swartz)是本课题组前期研究发现的一种可修复4-CP污染水体的植物[18]。为将堆叠构型、多级构型和模块化构型CW-MFC应用于工程中,本研究构建了CW-MFC-A(堆叠构型)、CW-MFC-B(多级构型)和CW-MFC-C(模块化构型) 3种中试CW-MFC,并以李氏禾为湿地植物,探究了不同构型CW-MFC系统在不同4-CP浓度(0、20、40和60 mg·L−1)下对废水的净化效果、产电性能和李氏禾生理生化响应的影响。
不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响
Effect of the constructed wetland-microbial fuel cells with different configurations on the purification of 4-chlorophenol in wastewater and the power generation performance
-
摘要: 构建了堆叠构型(CW-MFC-A)、多级构型(CW-MFC-B)和模块化构型(CW-MFC-C)的中试人工湿地-微生物燃料电池(CW-MFC),且探究了不同构型CW-MFC在不同对氯苯酚(4-CP)浓度(0、20、40和60 mg·L−1)下对废水的净化效果、产电性能和李氏禾生理生化响应的影响。结果表明,CW-MFC-A、CW-MFC-B和CW-MFC-C在40 mg·L−1 4-CP下具有最好的废水净化效果,在60 mg·L−1 4-CP下具有最高的产电性能,CW-MFC-C比CW-MFC-A和CW-MFC-B具有更好的4-CP去除效果(66.15%)、更高的产电电压(249.0 mV)和功率密度(96.9 mW·m−3)。3种构型CW-MFC内李氏禾的生理生化响应指标均随4-CP胁迫浓度增加而变差。同时,CW-MFC-C在对应更高产电性能的4-CP浓度下(60 mg·L−1),其李氏禾株高和生物量分别为45.30 cm和0.237 g·株−1,其叶片的可溶性蛋白含量、叶绿素含量、丙二醛(MDA)含量、气孔导度(Cleaf)、净光合速率(Pn)、蒸腾速率(Tr)和胞间CO2浓度(CO2In)分别为6.81 g·L−1、3.67 mg·g−1、0.24 μmol·L−1、0.02 mol·(m2·s)−1、1.20 μmol·(m2·s)−1、0.40 mmol·(m2·s)−1和852.24 mg·m−3,其受4-CP胁迫影响程度均小于CW-MFC-A和CW-MFC-B。以上所构建的模块化构型CW-MFC可为治理4-CP废水提供参考。Abstract: Pilot-scale constructed wetland-microbial fuel cell(CW-MFC) was constructed in stacked, multi-stage and modular configurations, and their effects the on power generation performance, wastewater purification and physiological and biochemical response of Leersia Hexandra Swartz at different concentrations of 4-chlorophenol (0, 20, 40 and 60 mg·L−1) were studied. The results showed that for the CW-MFC-A, CW-MFC-B, and CW-MFC-C, the highest removal effect occurred at 40 mg·L−1 4-CP, and the highest power generation performance occurred at 60 mg·L−1 4-CP. Simultaneously, the CW-MFC-C reactor had better 4-CP removal effect(66.15%), higher power production voltage(249.0 mV) and power density(96.9 mW·m−3) than CW-MFC-A and CW-MFC-B. The physiological and biochemical response of L. Hexandra in all reactors became worse with increasing 4-CP stress concentration. Meanwhile, at the 4-CP concentration of 60 mg·L−1 with higher power-producing performance, the plant height and biomass in CW-MFC-C were 45.30 cm and 0.237 g·plants−1, respectively, the soluble protein content, chlorophyll content, MDA content, Cleaf , Pn, Tr, and CO2In of its leaves were 6.81 g·L−1, 3.67 mg·g−1, 0.24 μmol·L−1, 0.02 mol·(m2·s)−1, 1.20 μmol·(m2·s)−1, 0.40 mmol·(m2·s)−1 and 852.24 mg·m-3, respectively, and the extent of 4-CP stress in CW-MFC-C was less than that in CW-MFC-A and CW-MFC-B. Furthermore, the design of the L. Hexandra CW-MFC with modular configuration can provide a reference for the governance of 4-CP contaminated wastewater.
-
表 1 与其他已报道的CW-MFC在产电性能上的比较
Table 1. Compared with other reported CW-MFC on the power generation performance
表 2 李氏禾的株高和生物量
Table 2. Plant height and biomass of L. Hexandra
4-CP质量浓度/(mg·L−1) 株高/cm 生物量/(g·株−1) CW-MFC-A CW-MFC-B CW-MFC-C CW-MFC-A CW-MFC-B CW-MFC-C 0 46.6±0.38a 46.5±0.65a 46.4±0.65a 0.265±0.004a 0.266±0.002a 0.268±0.003a 20 45.9±0.58abc 46.1±0.23ab 46.1±1.66ab 0.246±0.002bcd 0.250±0.007bc 0.253±0.005b 40 45.1±0.69bc 45.6±0.48abc 45.6±1.14abc 0.236±0.010de 0.241±0.006cde 0.245±0.008bcd 60 44.8±0.71c 44.9±0.15c 45.3±0.60bc 0.222±0.010f 0.232±0.005ef 0.237±0.006de 注:表中结果为平均值±标准偏差(n=3);同列中相同英文字母表示差异显著(LSD,P<0.05)。 -
[1] 刘菲, 赵胜勇, 刘启龙. 高铁酸钾氧化处理对氯苯酚废水的研究[J]. 应用化工, 2021, 50(3): 684-686. doi: 10.3969/j.issn.1671-3206.2021.03.025 [2] WATKINS M, SIZOCHENKO N, MOORE Q, et al. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure–property relationship analysis[J]. Journal of Molecular Modeling, 2017, 23(2): 23-39. [3] 姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO_2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. doi: 10.12030/j.cjee.202201078 [4] 李峰, 杨宝山, 王惠, 等. 开闭路运行模式下微生物燃料电池型人工湿地处理抗生素废水的效果及微生物群落响应[J]. 环境工程学报, 2021, 15(9): 3035-3045. doi: 10.12030/j.cjee.202105073 [5] PATEL D, BAPODRA S L, MADAMWAR D, et al. Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater[J]. Bioresource Technology, 2021, 332: 125088. doi: 10.1016/j.biortech.2021.125088 [6] 赵联芳, 于雪晴, 路宗仁, 等. FeS对CW-MFC系统降解活性艳红X-3B效果及过程的影响[J]. 中国环境科学, 2022, 42(7): 3093-3102. doi: 10.3969/j.issn.1000-6923.2022.07.012 [7] FANG Z, SONG H L, CANG N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresource Technology, 2013, 144: 165-171. doi: 10.1016/j.biortech.2013.06.073 [8] SONG H L, LI H, ZHANG S, et al. Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time[J]. Chemical Engineering Journal, 2018, 350: 920-929. doi: 10.1016/j.cej.2018.06.035 [9] DOHERTY L, ZHAO Y, ZHAO X, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J]. Chemical Engineering Journal, 2015, 266: 74-81. doi: 10.1016/j.cej.2014.12.063 [10] VILLASENOR J, CAPILLA P, RODRIGO M A, et al. Operation of a horizontal subsurface flow constructed wetland - Microbial fuel cell treating wastewater under different organic loading rates[J]. Water Research, 2013, 47(17): 6731-6738. doi: 10.1016/j.watres.2013.09.005 [11] YADAV A K, DASH P, MOHANTY A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47: 126-131. doi: 10.1016/j.ecoleng.2012.06.029 [12] XU L, ZHAO Y, WANG T, et al. Energy capture and nutrients removal enhancement through a stacked constructed wetland incorporated with microbial fuel cell[J]. Water Science and Technology, 2017, 76(1): 28-34. doi: 10.2166/wst.2017.168 [13] ZHANG S, YANG X L, LI H, et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J]. Bioresource Technology, 2017, 244: 345-352. doi: 10.1016/j.biortech.2017.07.143 [14] REN B, WANG T, ZHAO Y. Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation[J]. Chemosphere, 2021, 268: 128803. doi: 10.1016/j.chemosphere.2020.128803 [15] SRIVASTAVA P, YADAV A K, GARANIYA V, et al. Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: A new process[J]. Science of The Total Environment, 2020, 698: 134248. doi: 10.1016/j.scitotenv.2019.134248 [16] TAMTA P, RANI N, YADAV A K. Enhanced wastewater treatment and electricity generation using stacked constructed wetland–microbial fuel cells[J]. Environmental Chemistry Letters, 2020, 18(3): 871-879. doi: 10.1007/s10311-020-00966-2 [17] DOHERTY L, ZHAO Y. Operating a two-stage microbial fuel cell-constructed wetland for fuller wastewater treatment and more efficient electricity generation[J]. Water Science and Technology, 2015, 72(3): 421-428. doi: 10.2166/wst.2015.212 [18] 王超, 王义安, 林华, 等. 对氯苯酚胁迫下李氏禾的净化性能、生长状态及生理生化响应[J]. 应用与环境生物学报, 2022, 28(3): 662-667. doi: 10.19675/j.cnki.1006-687x.2021.01004 [19] 王义安, 张学洪, 郑君健, 等. 不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报, 2021, 15(11): 3696-3706. doi: 10.12030/j.cjee.202108060 [20] ZHANG K, YANG S, LUO H, et al. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration[J]. Chemosphere, 2022, 299: 134376. doi: 10.1016/j.chemosphere.2022.134376 [21] LIU S, SONG H, WEI S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland: Microbial fuel cell systems[J]. Bioresource Technology, 2014, 166: 575-583. doi: 10.1016/j.biortech.2014.05.104 [22] WANG G, GUO Y, CAI J, et al. Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell[J]. RSC Advances, 2019, 9(37): 21460-21472. doi: 10.1039/C8RA10130B [23] WANG J, HE M-F, ZHANG D, et al. Simultaneous degradation of tetracycline by a microbial fuel cell and its toxicity evaluation by zebrafish[J]. RSC Advances, 2017, 7(70): 44226-44233. doi: 10.1039/C7RA07799H [24] LIU J, ZHANG X H, YOU S H, et al. Function of Leersia hexandra Swartz in constructed wetlands for Cr(VI) decontamination: A comparative study of planted and unplanted mesocosms[J]. Ecological Engineering, 2015, 81: 70-75. doi: 10.1016/j.ecoleng.2015.04.025 [25] SONAWANE J M, AL-SAADI S, SINGH RAMAN R K, et al. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 268: 484-493. doi: 10.1016/j.electacta.2018.01.163 [26] 周品成, 刘希强, 康兴生, 等. 4种水生植物对兽用抗生素去除效果比较[J]. 华南农业大学学报, 2019, 40(6): 67-73. doi: 10.7671/j.issn.1001-411X.201901020 [27] 刘昭君, 林华, 王义安, 等. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应[J]. 生态环境学报, 2021, 30(2): 412-419. doi: 10.16258/j.cnki.1674-5906.2021.02.022 [28] DENG Y, WANG W, YU P, et al. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo[J]. NANOSCALE RESEARCH LETTERS, 2013: 8. [29] 袁玉杰, 赵亚乾, 付晶淼, 等. CW-MFC中的电子流及对废水处理的强化作用[J]. 中国给水排水, 2021, 37(16): 27-34. doi: 10.19853/j.zgjsps.1000-4602.2021.16.005 [30] ZHAO Y, BU C, YANG H, et al. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China[J]. Chemosphere, 2020, 250: 126195. doi: 10.1016/j.chemosphere.2020.126195 [31] FANG Z, CAO X, LI X, et al. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238: 450-460. doi: 10.1016/j.biortech.2017.04.075 [32] GUPTA S, NAYAK A, ROY C, et al. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production[J]. Chemosphere, 2021, 263: 128132. doi: 10.1016/j.chemosphere.2020.128132 [33] SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology, 2015, 195: 223-230. doi: 10.1016/j.biortech.2015.05.072 [34] OON Y L, ONG S, HO L, et al. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery[J]. Bioresource Technology, 2017, 224: 265-275. doi: 10.1016/j.biortech.2016.10.079 [35] 秦歌, 陈婧, 余仁栋, 等. 人工湿地-微生物燃料电池对高碳氮废水的强化净化和产电研究[J]. 湿地科学与管理, 2021, 17(4): 12-17. doi: 10.3969/j.issn.1673-3290.2021.04.03 [36] 覃辉, 林华, 徐虹, 等. 李氏禾对水体中Ni的富集特征及其光合生理响应[J]. 水处理技术, 2022, 48(7): 92-97. doi: 10.16796/j.cnki.1000-3770.2022.07.018 [37] ABID M, ALI S, QI L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L. )[J]. Scientific Reports, 2018, 8(1): 4615. doi: 10.1038/s41598-018-21441-7 [38] 周蛟, 韩盼盼, 潘远智, 等. Cd胁迫对两种龙葵光合生理及叶绿素荧光特性的影响[J]. 农业环境科学学报, 2021, 40(1): 26-34. doi: 10.11654/jaes.2020-0818