-
生物发酵法生产长链二元酸(C10~C18)是石化领域的新工艺。中国是全球最大的生物发酵法长链二元酸生产基地,投产和在建的二元酸装置超过30套[1]。二元酸生产废水是新型石化工艺伴生高浓度点源废水的代表。二元酸生产废水中残留硫酸、二元酸盐以及培养基成分,表现出较强酸性,含有高浓度的总磷、硫酸盐和COD,对综合污水厂进水总磷、COD负荷冲击极大,无法满足达标排放要求。另外,高浓度的硫酸盐在厌氧处理单元会生成H2S,建有二元酸装置的石化企业都承受着巨大的综合污染负荷冲击[2-3]。因此,采用简单高效的预处理手段,大幅度削减二元酸生产废水的总磷、硫酸盐和COD负荷,从而保障综合污水厂安全运行和稳定达标,是石化企业工艺路线升级发展过程中亟待解决的问题。
已有研究的二元酸生产废水处理技术多以高COD为主要去除目标[3-6]。“中和沉淀+序批式活性污泥法(sequencing batch reactor, SBR)”工艺对COD和BOD5去除率可达90%,但高硫酸盐导致厌氧处理过程H2S溢出严重[3]。全好氧工艺可避免厌氧环境下的H2S产生与溢出难题,通过添加脂肪酶来促进生物降解,可将COD去除率稳定在95%[4]。但是生物处理技术对高浓度总磷和硫酸盐的去除基本无效。采用高级氧化或生物-高级氧化组合工艺虽然可以进一步提高COD去除率,但对总磷和硫酸盐的去除效果甚微[5-6]。二元酸生产废水预处理的关键是大幅度削减硫酸盐和总磷负荷,化学沉淀法是快速高效、操作简便且容易实现工程化的预处理手段[7-8]。钡盐被广泛用于化学沉淀法中以去除硫酸盐,但药剂成本高,难以大规模应用,而且对总磷的去除率低。铁盐和铝盐是常用的除磷剂,对低浓度总磷的去除更有效,但对高浓度总磷和硫酸盐的去除效果却很有限[9-11]。钙盐更适合于高浓度总磷的去除[12],可应用于二元酸生产废水的预处理,通过生成磷酸钙(Ca3(PO4)2)、羟基磷酸钙(Ca10(PO4)6(OH)2)等沉淀去除高浓度总磷,并在静电吸附作用下去除有机酸阴离子,对总磷和COD的去除率分别为97%和41%。由于受限于硫酸钙的高溶解度(pKsp=3.70),因此,钙盐对高浓度硫酸盐的去除效果并不理想[2]。
钙矾石(分子式Ca6Al2(SO4)3(OH)12·26H2O)简称AFt,是Al3+、Ca2+与SO42−结合形成的一种不溶性针状晶体(pKsp=43.13)。钙矾石沉淀法不仅可以高效去除硫酸盐,而且游离Ca2+能与磷酸盐形成羟基磷灰石沉淀,实现对硫酸盐和总磷的同步脱除[12-13]。以水合铝盐及石灰乳为脱除剂,对模拟工业废水中高浓度的硫酸盐(1 720 mg·L−1)进行去除,去除率达到94%[14]。以石灰乳和氯化铝为脱除剂,在pH为11,SO42−和Al3+摩尔比为1.7时,对煤矿酸性矿井水中高浓度硫酸盐(1 804 mg·L−1)进行去除,去除率高达95%[15]。以水合氯化铝及氧化钙为脱除剂,对烟气脱硫废水中高浓度的硫酸盐(2 086 mg·L−1)进行去除,去除率高达92%,沉淀产物为针状纳米钙矾石结晶[16]。钙矾石法同步去除真实工业废水中高浓度总磷、硫酸盐和有机污染负荷的研究鲜有报道。
本研究利用钙矾石沉淀法同步去除二元酸废水中高浓度总磷、硫酸盐和有机污染负荷,设计正交实验并确定最优工艺参数条件,探索预处理过程中多污染物同步去除机理,旨在解决已投产二元酸装置石化企业的污水处理问题,实现对高浓度点源二元酸废水的源头控制,以期为投产二元酸装置石化企业或化工园区的污水处理系统安全运行和稳定达标提供技术支撑。
基于钙矾石沉淀法的长链二元酸生产废水预处理工艺
Pretreatment process of long chain dicarboxylic acid wastewater based on an ettringite precipitation method
-
摘要: 为避免长链二元酸生产废水中高浓度的总磷和硫酸盐对石化企业污水处理系统造成冲击,利用钙矾石沉淀法同步去除高浓度的总磷和硫酸盐,设计3因素3水平正交实验,探究了钙盐投加量、铝盐投加量和pH对污染物去除效果的影响,并优化工艺参数;利用GC-MS探究预处理前后废水有机污染组分的变化;利用XRD和XRF分析沉淀副产物的物质组成,并通过离子溶出实验探究沉淀副产物的可再利用潜力。结果表明:CaCl2-PAC体系对污染物的去除效果优于Ca(OH)2-PAC体系;CaCl2-PAC体系中各因素对污染物去除效果的影响顺序为pH> CaCl2投加量>PAC投加量;在15 g·L−1 CaCl2、20 g·L−1 PAC以及初始pH=4.0的最优工艺条件下,对总磷、硫酸盐及COD的去除率分别高达98.9%、88.2%和60.2%;Ca2+与PO43−生成Ca3(PO4)2和Ca10(PO4)6(OH)2沉淀,同时,PAC水解产物Ala和Ca2+及SO42−形成单硫型硫酸铝钙(AFm)沉淀,实现对总磷和硫酸盐的高效同步去除,并通过吸附-混凝-共沉淀的综合作用大幅削减有机污染负荷;二元酸废水中有机污染物以小分子酸为主,预处理后生物降解性略有下降,但仍属于易生物降解的有机废水;沉淀副产物具有再利用于混凝土膨化剂以及植物缓释磷肥的潜力。钙矾石沉淀法预处理工艺简单、效果稳定、成本低,该工艺可为投产二元酸装置石化企业污水处理系统的稳定达标运行提供有效保障。Abstract: To avoid the impact of high concentrations of total phosphorus (TP) and sulfate in dicarboxylic acid wastewater on the wastewater treatment plant (WWTP) of petrochemical enterprises, an ettringite precipitation method was used to remove high concentration of TP and sulfate simultaneously, the orthogonal experiments with three factors and three levels were designed, the effects of calcium salt dosage, aluminum salt dosage and pH on pollutant removal were investigated, and the process parameters were optimized; the changes in organic pollution components of wastewater before and after pretreatment were studied by using GC-MS; the material composition of precipitation byproducts was analyzed by using XRD and XRF, and the potential for reuse of precipitation byproducts was explored by using ion dissolution experiments. The results show that the removal effect of pollutants by CaCl2-PAC system was better than that by Ca(OH)2-PAC system. In the CaCl2-PAC system, the influence order of each factor on the pollutant removal effect was pH > CaCl2 dosage > PAC dosage. Under the optimal process conditions of 15 g·L−1 CaCl2, 20 g·L−1 PAC, and initial pH=4.0, the removal rates of TP, sulfate, and COD were as high as 98.9%, 88.2%, and 60.2%, respectively. Ca3(PO4)2 and Ca10(PO4)6(OH)2 precipitation occurred between Ca2+and PO43−, at the same time, a single sulfur aluminum calcium sulfate (AFm) precipitate occurred among PAC hydrolysis product Ala forms, Ca2+and SO42−, the simultaneous removal of TP and sulfate was achieved, and the organic pollution load was largely reduced through adsorption-coagulation-coprecipitation. The organic pollutants in dicarboxylic acid wastewater are mainly small molecule acids, and its biodegradability decreased slightly after pre-treatment, but it still belonged to easily biodegradable organic wastewater. The byproducts have a potential for being reused as concrete expansion agents and plant slow-release phosphate fertilizers. The pretreatment process is simple, stable and low in cost, which can provide an effective guarantee for the stable and standard operation of WWTP of petrochemical enterprises with the dicarboxylic acid production device.
-
表 1 正交实验表
Table 1. Orthogonal experimental table
实验 因素A1(A2) 因素B 因素C 实验1 1 1 1 实验2 1 2 3 实验3 1 3 2 实验4 2 1 3 实验5 2 2 2 实验6 2 3 1 实验7 3 1 2 实验8 3 2 1 实验9 3 3 3 表 2 各因素水平表
Table 2. Factor level table of orthogonal experiment
水平 因素A1(A2) 因素B 因素C 水平1 5.0 10 4.0 水平2 10 15 5.0 水平3 15 20 6.0 表 3 正交实验结果
Table 3. Orthogonal experiment results
实验
序号因素 硫酸盐
去除率/%总磷
去除率/%COD
去除率/%A1 B C 1 1 1 1 19.7 96.4 49.1 2 1 2 3 25.5 96.9 50.5 3 1 3 2 33.8 96.8 52.8 4 2 1 3 43.1 99.3 56.1 5 2 2 2 61.4 99.4 57.4 6 2 3 1 68.6 99.7 58.6 7 3 1 2 52.4 99.4 61.4 8 3 2 1 70.5 99.7 61.9 9 3 3 3 76.7 99.1 61.7 实验
序号因素 硫酸盐
去除率/%总磷
去除率/%COD
去除率/%A2 B C 1 1 1 1 57.2 96.0 47.2 2 1 2 3 42.1 98.1 56.1 3 1 3 2 56.4 96.9 54.4 4 2 1 3 53.2 98.6 55.2 5 2 2 2 70.3 97.0 54.3 6 2 3 1 85.6 96.6 53.6 7 3 1 2 60.1 97.3 54.1 8 3 2 1 81.5 97.2 56.5 9 3 3 3 67.7 99.7 61.2 表 4 硫酸盐去除率极差分析
Table 4. Orthogonal experimental results of sulfate removals
因素 kj1 kj2 kj3 极差R 因素 kj1 kj2 kj3 极差R A1 26.4 57.7 66.6 40.2 A2 51.9 69.7 69.8 17.8 B 38.4 52.5 59.7 21.3 B 56.8 64.6 69.9 13.1 C 50.4 49.2 50.9 1.70 C 74.8 62.3 54.3 20.4 主次顺序 A1>B>C 主次顺序 C>A2>B 表 5 总磷去除率极差分析
Table 5. Orthogonal experimental results of total phosphorus removals
因素 kj1 kj2 kj3 极差R 因素 kj1 kj2 kj3 极差R A1 96.7 99.4 99.4 2.70 A2 96.9 97.4 98.1 1.10 B 98.4 98.7 98.5 0.30 B 97.3 97.4 97.7 0.30 C 98.6 98.6 98.4 0.20 C 96.6 97.1 98.8 1.70 主次顺序 A1>B>C 主次顺序 C>A2>B 表 6 COD去除率极差分析
Table 6. Orthogonal experimental results of COD removals
因素 kj1 kj2 kj3 极差R 因素 kj1 kj2 kj3 极差R A1 44.8 51.4 55.7 10.9 A2 46.5 48.4 51.4 4.90 B 49.5 50.6 51.7 2.20 B 46.2 49.6 50.6 4.40 C 50.5 51.2 50.1 1.10 C 46.4 48.3 51.7 5.30 主次顺序 A1>B>C 主次顺序 C>A2>B 表 7 预处理前后主要污染指标变化
Table 7. Changes in main pollution indexes before and after pretreatment
序号 污染指标 预处理前/(mg·L−1) 预处理后/(mg·L−1) 去除率/% 1 总磷 272 2.9 98.9 2 硫酸盐 10 360 1 224 88.2 3 COD 6 201 2 470 60.2 4 BOD5 3 485 1 080 69.0 5 BOD5/COD 0.56 0.44 — 6 DOC 2 441 951 61.5 7 TDS 19 197 17 513 8.70 表 8 预处理前后有机污染组成变化
Table 8. Changes in organic pollution compositions before and after pretreatment
水样 有机物类型 碳数/个 污染物种类 相对分子质量 相对丰度/% 预处理前的水样 有机酸类 6~12 11 116~230 92.9 酯类 6~10 3 296~390 3.40 醇类 8 1 122 0.40 烷烃类 11 1 156 1.10 胺类 8 2 135 2.20 预处理后的水样 有机酸类 6~12 9 122~230 91.4 酯类 6~10 3 142~234 3.30 胺类 8 1 135 5.30 -
[1] 张全, 文志琼, 张霖, 等. 长链二元酸发酵菌种创制和工艺研究进展[J]. 生物工程学报, 2022, 38(12): 4420-4431. [2] 陈霖, 曹越, 张仁忠, 等. 某石化企业长链二元酸生产废水的预处理工艺及现场应用[J]. 环境工程学报, 2022, 16(2): 666-673. [3] 杨健, 黄伟星, 王士芬, 等. 十三碳二元酸发酵有机废水处理研究[J]. 环境污染与防治, 1999, 21(1): 15-18. [4] 车树刚, 马娜娜, 傅英旬, 等. 生物酶法处理二元酸废水[J]. 环境科技, 2019, 32(4): 36-40. [5] 许莉, 王明毓, 蔡永益. 电解法处理十三碳二元酸有机废水的研究[J]. 流体机械, 2007, 12(10): 1-4. [6] 于永辉, 刘守新, 李作臣, 等. 二元酸废水的生物-光催化氧化组合处理技术[J]. 工业水处理, 2004, 12(2): 23-25. [7] SUKALYAN S, ARKA P. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer[J]. Water Research, 2011, 11: 3318-330. [8] ZHANG Z B, LI Y, WEI L L. Effect of ferric chloride on the properties of biological sludge in co-precipitation phosphorus removal process[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 564-568. doi: 10.1016/S1004-9541(13)60511-X [9] BARCA C, GERENTE C, MEYER D. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe[J]. Water Research, 2012, 46: 2376-2384. doi: 10.1016/j.watres.2012.02.012 [10] 珍珠, 范瑞江. 两级石灰沉淀法在高浓度含氟含磷污水处理中的应用[J]. 化肥设计, 2015, 53(6): 34-37. [11] 史正学. 浅谈硫酸根的去除方法[J]. 盐业与化工, 2015, 44(7): 27-29. [12] NORAPAT P, SIWAT S, YOTHIN C, et al. Sulfate removal from lignite coal mine drainage in Thailand using ettringite precipitation[J]. Chemosphere, 2021, 285: 131357. doi: 10.1016/j.chemosphere.2021.131357 [13] WEI X D, ZHEN Z, LU J, et al. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization[J]. Journal of Environmental Management, 2017, 196: 518-526. doi: 10.1016/j.jenvman.2017.03.054 [14] 王海鹰, 彭小玉, 王云燕, 等. 采用复盐法脱除工业废水中的硫酸根[J]. 中南大学学报(自然科学版), 2010, 41(2): 434-439. [15] 胡文容. 铝盐沉淀法去除酸性矿井水中SO42-的试验研究[J]. 煤矿环境保护, 1996, 12(5): 18-20. [16] 王玉东, 赵丹, 董延茂, 等. 钙矾石沉淀法去除镁剂脱硫废水中硫酸根离子研究[J]. 工业水处理, 2015, 35(6): 54-57. [17] 袁辉洲, 柯水洲, 涂家勇, 等. pH对聚合铝形态分布与混凝效果的影响[J]. 工业水处理, 2016, 36(4): 50-53. [18] DONG R, XIAO B, FANG Y. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture, 2004, 12(14): 145-149. [19] HUI C, JIAN M W, TAO P, et al. Study on the orthogonal yest of al-substituted α-Ni(OH)2 prepared by complexation-precipitation method[J]. Electrochemistry, 2002, 9(12): 122-129. [20] 周鹏. 盐度冲击对活性污泥系统性能影响的研究[J]. 环境科学与技术, 2011, 34(5): 65-68. [21] KINCANNON D F, GAUDY A F. Response of biological wastetreatment systems to changes in salt concentration[J]. Biotechnology and Bioengineering, 1968, 10(12): 483-496. [22] BUMRTT W E. The effect of salinity variations on theactivated sludge process[J]. Water and Sewage Works, 1974, 121(65): 37-38. [23] UTGUR A. KARGI F. Salt inhibition on biological nutrientremocal from saline wastewater in a sequencing batch reactor[J]. Enzyme and Microbial Technology, 2004, 34(71): 313-318. [24] BLACK L, BREEN C, YARWOOD J, et al. In situ raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulfate[J]. Advances in Applied Ceramics, 2006, 5(4): 209-216. [25] BARNETT S J, ADAM C D, JACKSON A R W. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O[J]. Journal of Materials Science, 2000, 35(16): 4109-4114. doi: 10.1023/A:1004898623884 [26] CODY A M, LEE H, CODY R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite[Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement Concrete Research, 2004, 34(5): 869-881. doi: 10.1016/j.cemconres.2003.10.023 [27] POELLMANN H, KUZEL H J, WENDA R. Solid solution of ettringites part I: Incorporation of OH− and CO32– in 3CaO·A12O3·32H2O[J]. Cement Concrete Research, 1990, 20(6): 941-947. doi: 10.1016/0008-8846(90)90057-5 [28] 张文生, 张金山, 叶家元等. 合成条件对钙矾石形貌的影响[J]. 硅酸盐学报, 2017, 9(5): 631-638. [29] 王趁义, 毕树平. 环境水体中聚合铝形态的分析测试技术研究进展[J]. 分析科学学报, 2004, 20(3): 317-321. [30] 刘翠, 牟凤利, 王吉秀, 等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8): 38-43. [31] 束良佐. 生长介质和局部供磷对白羽扇豆排根形成和柠檬酸分泌的影响[D]. 北京: 中国农业大学, 2005.