-
施氏矿物(Schwertmannite)是一种次生铁(Fe)-羟基硫酸盐矿物,其结晶度弱、比表面积大,目前在环境污染治理中得到广泛关注[1]。其产生源包括酸性矿山排水[2]、酸性硫酸盐土壤[3]、煤矿[4],以及铜堆渗滤液溶液等特定废液/固体废物[5]。
作为一种新型环境友好的铁基材料,施氏矿物独特的孔道结构和离子交换性能使其对水相中的无机污染物具有良好的吸附能力,例如砷[6]、六价铬[7]、镉和铅[8]等。同时,施氏矿物可以通过光催化、活化过硫酸盐降解溶液中磺胺甲恶唑[9]、土霉素[10]、甲基橙[11]等有机污染物。目前有关施氏矿物的研究论文逐渐增多,亟需对其研究现状和存在的问题进行系统的分析,以期推动施氏矿物在污染治理领域的研究和利用。
文献计量法经常被用于研究和衡量研究人员、政府、研究机构、大学、科学出版商和期刊在特定科学学科中的研究进展和趋势[12]。通过概述特定科学领域的最新发展,可以确定其主要趋势和存在问题,从而使研究方向更能聚焦于解决特定领域科学技术进步的障碍。近年来,文献计量研究在多个科学领域得到广泛应用,包括全球可持续和可持续发展[13]、土壤生态系统服务[14]、二氧化碳封存[15]、过硫酸盐氧化技术[16]、绿色纳米材料合成[17]等,这进一步证实了该方法对现有文献深度整理的重要性。
为了更好地跟踪施氏矿物在全球范围内的研究趋势,本研究提取了1990—2021年期间Web of Science (WoS)核心合集数据库和中国知网(CNKI)数据库收录的施氏矿物相关研究论文,分析了文献数量、发表刊物、研究团队(国家、机构和作者)以及文献被引频次等信息,结合关键词共现网络图和关键词突现图等梳理和回顾了施氏矿物的研究热点与发展趋势。通过系统归纳30年来施氏矿物的结构-性质关系及其在环境污染治理领域的研究成果,探讨了关于该功能材料研究面临的挑战,以期为今后的相关研究提供有益参考。
基于文献计量的环境功能材料施氏矿物的研究趋势分析
Research trend of the environmental functional material Schwertmannite based on bibliometrics analysis
-
摘要: 基于文献计量学分析方法,利用Web of Science核心合集数据库和中国知网(CKNI)数据库对1990—2021年期间有关施氏矿物的文献进行梳理和总结。通过分析发文量、国家、作者、研究机构、关键词等数据,绘制了关键词频次密度图和关键词突现图等,以回顾施氏矿物的研究历史,发掘其研究热点和研究趋势。结果表明:自20世纪90年代初施氏矿物首次报道以来,其相关发文量稳步上升,现超过60篇/年。关于施氏矿物的初期研究热点为其结构性质解析等,现阶段研究热点为其在重金属污染水体和土壤修复,以及光催化降解有机污染物等领域的应用探索。建议深入研究复杂环境体系中施氏矿物的稳定性及相变过程,以促进该环境友好功能材料在生态修复领域的进一步发展。Abstract: Based on the bibliometrics analysis method, the literatures on Schwertmannite from 1990 to 2021 were reviewed and summarized using the Web of Science core collection database and the China National Knowledge Network (CKNI) database. By analyzing databases such as publication volume, countries, authors, research institutions, and keywords, the keywords frequency density map and the emergent map were drawn to review the research history of Schwertmannite and identify research hotspots and trends. The results showed that publication volume related to Schwertmannite had steadily increased since their initial report in the early 1990s with more than 60 publications per year currently. In the early stage, the focus of the research on Schwertmannite was on the analysis of its structure and properties, while the current research hotpots included their application in the fields of heavy metal adsorption, soil remediation, and photocatalysis. It is suggested to study the environmental stability and the phase transformation process of Schwertmannite in complex environmental systems to promote the further development of these environmentally friendly functional materials in the field of the ecological restoration.
-
Key words:
- Schwertmannite /
- environmental remediation /
- research trends /
- bibliometrics analysis
-
表 1 施氏矿物研究发文量最多的学者(前10)
Table 1. The research scholar with the largest number of published papers on Schwertmannite (top 10)
序号 学者 国家 机构 文献数/
量篇总被引/
数次篇均被引
数次h指数 1 ZHOU L X(周立祥) 中国 南京农业大学 55 1060 20.78 20 2 NIETO J 西班牙 韦尔瓦大学 37 1564 42.27 21 3 BUTTON E 澳大利亚 南十字星大学 37 1579 42.68 20 4 AYORA C 西班牙 哈乌梅-阿尔梅拉
地球科学研究所28 1274 45.50 19 5 DANG Z(党志) 中国 华南理工大学 26 386 14.85 10 6 LU G N(卢桂宁) 中国 华南理工大学 25 384 17.45 10 7 SULLIVAN L 澳大利亚 堪培拉大学 25 1311 52.44 15 8 BUSH R 澳大利亚 南十字星大学 24 1371 57.13 16 9 JOHNSTON S 澳大利亚 南十字星大学 23 980 42.61 15 10 PEIFFER S 德国 拜罗伊特大学 23 928 40.35 10 表 2 施氏矿物研究机构(前10)
Table 2. The research institution with the largest number of publications on Schwertmannite (top 10)
排名 所属机构 国家 发文量/篇 总被引/
次篇均被
引/次1 UNIVERSIDAD DE HUELVA(韦尔瓦大学) 西班牙 53 1 933 36.47 2 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS CSIC
(西班牙高等科研理事会)西班牙 52 2 043 38.55 3 NANJING AGRICULTURAL UNIVERSITY(南京农业大学) 中国 51 1 087 20.90 4 CSIC CENTRO DE INVESTIGACION Y DESARROLLO PASCUAL VILA CID CSIC(西班牙高等科研理事会研究与开发中心) 西班牙 46 1 935 42.07 5 CSIC INSTITUTO DE DIAGNOSTICO AMBIENTAL Y ESTUDIOS DEL AGUA IDAEA(环境诊断研究所和思想研究中心) 西班牙 36 1 243 34.53 6 SOUTHERN CROSS UNIVERSITY(南十字星大学) 澳大利亚 35 1 526 43.60 7 CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
(法国国家科学研究中心)法国 33 1 458 44.18 8 UNITED STATES DEPARTMENT OF THE INTERIOR(美国内政部) 美国 28 1 613 57.61 9 UNITED STATES GEOLOGICAL SURVEY(美国地质调查所) 美国 28 1 613 57.61 10 UNIVERSITY OF BAYREUTH(拜罗伊特大学) 德国 27 939 34.78 表 3 收录施氏矿物研究论文最多的期刊(前10)
Table 3. The journal with the largest collection of Schwertmannite research papers (top 10)
排名 期刊名称 发文量/篇 引用数/次 大类JCR分区 影响因子(2020 a) 1 APPLIED GEOCHEMISTRY 76 4 589 Q2 3.524 2 GEOCHIMICA ET COSMOCHIMICA ACTA 53 4 206 Q1 5.010 3 ENVIRONMENTAL SCIENCE & TECHNOLOGY 49 3 059 Q1 9.028 4 CHEMICAL GEOLOGY 44 1 651 Q1 4.015 5 JOURNAL OF HAZARDOUS MATERIALS 31 1 119 Q1 10.588 6 SCIENCE OF THE TOTAL ENVIRONMENT 28 801 Q1 7.963 7 CHEMOSPHERE 28 560 Q1 7.086 8 JOURNAL OF GEOCHEMICAL EXPLORATION 22 1260 Q1 3.746 9 ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 20 274 Q2 4.223 10 MINERALS 19 256 Q1 2.644 表 4 被引频次最高的施氏矿物研究文献(前10)
Table 4. The most frequently cited research papers on Schwertmannite (top 10)
排名 论文标题 发表年份 通讯作者 作者机构 国家 所属期刊 被引数/次 1 Schwertmannite and the chemical modeling of iron in acid sulfate waters 1996 BIGHAM J 俄亥俄
州立
大学美国 GEOCHIMICA ET COSMOCHIMICA ACTA 831 2 Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms 2005 WAYCHUNAS G 劳伦斯伯
克利国家
实验室美国 JOURNAL OF NANOPARTICLE RESEARCH 466 3 An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite 1999 PEAK D 特拉华大学 美国 JOURNAL OF COLLOID AND INTERFACE SCIENCE 394 4 Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications 2005 ESPANA J 西班牙地
质和采矿
研究所西班牙 APPLIED GEOCHEMISTRY 387 5 Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues 2002 BIGHAM J 俄亥俄州
立大学美国 ENVIRONMENTAL SCIENCE & TECHNOLOGY 328 6 Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities 1994 BIGHAM J 俄亥俄州
立大学美国 MINERALOGICAL MAGAZINE 317 7 Formation and stability of schwertmannite in acidic mining lakes 2004 REGENSPURG S 科罗拉多
矿业学院美国 GEOCHIMICA ET COSMOCHIMICA ACTA 312 8 Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils 1998 SCHEINOST A 特拉华大学 美国 CLAYS AND CLAY MINERALS 304 9 Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee 2002 BIGHAM J 俄亥俄州
立大学美国 APPLIED GEOCHEMISTRY 300 10 Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate 1998 WEBSTER J 环境科学与
研究机构新西兰 ENVIRONMENTAL SCIENCE & TECHNOLOGY 288 -
[1] SCHOEPFER V A, BURTON E D. Schwertmannite: A review of its occurrence, formation, structure, stability and interactions with oxyanions[J]. Earth-Science Reviews, 2021: 221:103811. [2] REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of Schwertmannite in acidic mining lakes[J]. Geochimica etCosmochimica Acta, 2004, 68(6): 1185 − 1197. doi: 10.1016/j.gca.2003.07.015 [3] MOSLEY L M, DANG T, MCLAUGHLIN M J, et al. Extreme biogeochemical effects following simulation of recurrent drought in acid sulfate soils[J]. Applied Geochemistry, 2022, 136:105146. [4] RIBEIRO J, TAFFAREL S R, SAMPAIO C H, et al. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal[J]. International Journal of Coal Geology, 2013, 109-110: 15 − 23. doi: 10.1016/j.coal.2013.01.007 [5] HOUNGALOUNE S, KAWAAI T, HIROYOSHI N, et al. Study on Schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions[J]. Hydrometallurgy, 2014, 147-148: 30 − 40. doi: 10.1016/j.hydromet.2014.04.001 [6] YING H, HUANG K, FENG X, et al. As(Ⅲ) adsorption–oxidation behavior and mechanisms on Cr(VI)-incorporated Schwertmannite[J]. Environmental Science:Nano, 2021, 8(6): 1593 − 1602. doi: 10.1039/D1EN00104C [7] LI X, GUO C, JIN X, et al. Mechanisms of Cr(VI) adsorption on Schwertmannite under environmental disturbance: Changes in surface complex structures[J]. Journal of Hazardous Materials, 2021, 416: 125781. doi: 10.1016/j.jhazmat.2021.125781 [8] 何楚城, 李晓飞, 祝紫莹, 等. 柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究[J]. 环境科学学报, 2021, 41(12): 4793 − 4802. [9] YAN S, ZHAN L, MENG X, et al. Role of Schwertmannite or jarosite in photocatalytic degradation of sulfamethoxazole in ultraviolet/peroxydisulfate system[J]. Separation and Purification Technology, 2021, 274:118991. [10] 王妍燕, 师欣茹, 毕文龙, 等. 施氏矿物协同Cu(II)活化过硫酸盐去除水中土霉素的效果[J]. 环境科学学报, 2021, 42(2): 108 − 116. [11] 周佳兴, 董燕, 刘奋武, 等. NaBH4对施氏矿物-黄铁矾生物化学合成的影响及矿物在催化降解甲基橙中的应用[J]. 环境工程学报, 2021, 15(4): 1242 − 1251. [12] XIYANG H. A visual analysis of the research on the use of mobile phones by college students based on VOSviewer[J]. International Journal of Education and Management Engineering, 2020, 10(6): 10 − 16. [13] OLAWUMI T O, CHAN D W M. A scientometric review of global research on sustainability and sustainable development[J]. Journal of Cleaner Production, 2018, 183: 231 − 250. doi: 10.1016/j.jclepro.2018.02.162 [14] 陈甜倩, 高阳, 冯喆, 等. 基于CiteSpace的土壤生态系统服务研究热点与趋势[J]. 中国农业大学学报, 2021, 26(7): 204 − 219. [15] DAVARAZAR M, JAHANIANFARD D, SHEIKHNEJAD Y, et al. Underground carbon dioxide sequestration for climate change mitigation – A scientometric study[J]. Journal of CO2 Utilization, 2019, 33: 179 − 188. doi: 10.1016/j.jcou.2019.05.022 [16] 蒲生彦, 吕雪, 张颖. 基于文献计量的全球活化过硫酸盐氧化技术研究趋势分析[J]. 环境工程学报, 2020, 14(10): 2895 − 2908. [17] KHALAJ M, KAMALI M, COSTA M E V, et al. Green synthesis of nanomaterials - A scientometric assessment[J]. Journal of Cleaner Production, 2020, 267:122036. [18] WANG X, ZHANG Y, ZHANG J, et al. Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis[J]. Journal of Cleaner Production, 2021, 281:125224. [19] KASAVAN S, YUSOFF S, RAHMAT FAKRI M F, et al. Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020[J]. Journal of Cleaner Production, 2021, 313:127946. [20] ACHARYA B S, KHAREL G. Acid mine drainage from coal mining in the United States – An overview[J]. Journal of Hydrology, 2020, 588:125061. [21] CANOVAS C R, OLIAS M, NIETO J M, et al. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents[J]. Science of The Total Environment, 2007, 373(1): 363 − 382. doi: 10.1016/j.scitotenv.2006.11.022 [22] SHRIVASTAVA R, MAHAJAN P. Artificial Intelligence Research in India: A Scientometric Analysis[J]. Science & Technology Libraries, 2016, 35(2): 136 − 151. [23] ZHANG J, JIANG L, LIU Z, et al. A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions[J]. Journal of Cleaner Production, 2021, 300:126824. [24] BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2743 − 2758. doi: 10.1016/0016-7037(90)90009-A [25] SáNCHEZ-ESPAñA J, YUSTA I, DIEZ-ERCILLA M. Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes[J]. Applied Geochemistry, 2011, 26(9-10): 1752 − 1774. doi: 10.1016/j.apgeochem.2011.06.020 [26] JöNSSON J, PERSSON P, SJöBERG S, et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 2005, 20(1): 179 − 191. doi: 10.1016/j.apgeochem.2004.04.008 [27] REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in Schwertmannite[J]. Applied Geochemistry, 2005, 20(6): 1226 − 1239. doi: 10.1016/j.apgeochem.2004.12.002 [28] WANG X, YING H, ZHAO W, et al. Molecular-scale understanding of sulfate exchange from Schwertmannite by chromate versus arsenate[J]. Environmental Science & Technology, 2021, 55(9): 5857 − 5867. [29] FRENCH R A, MONSEGUE N, MURAYAMA M, et al. The structure and transformation of the nanomineral Schwertmannite: a synthetic analog representative of field samples[J]. Physics and Chemistry of Minerals, 2013, 41(4): 237 − 246. [30] ZHANG C, ZHANG Z, CHEN M, et al. The influence of fractal nature on Schwertmannite adsorption properties[J]. RSC Advances, 2017, 7(45): 27895 − 27899. doi: 10.1039/C7RA04114D [31] BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(III) to Schwertmannite[J]. Environmental Science & Technology, 2009, 43(24): 9202 − 9207. [32] 李浙英, 梁剑茹, 柏双友, 等. 生物成因与化学成因施氏矿物的合成、表征及其对As(III)的吸附[J]. 环境科学学报, 2011, 31(3): 460 − 467. [33] MORI J F, LU S, HANDEL M, et al. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix[J]. Microbiology (Reading), 2016, 162(1): 62 − 71. doi: 10.1099/mic.0.000205 [34] ESKANDARPOUR A, ONYANGO M S, OCHIENG A, et al. Removal of fluoride ions from aqueous solution at low pH using Schwertmannite[J]. Journal of Hazardous Materials, 2008, 152(2): 571 − 579. doi: 10.1016/j.jhazmat.2007.07.020 [35] LI Y, MOHAN D, PITTMAN C U, et al. Removal of antimonate and antimonite from water by Schwertmannite granules[J]. Desalination and Water Treatment, 2016, 57(53): 25639 − 25652. doi: 10.1080/19443994.2016.1155176 [36] WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262: 412 − 419. doi: 10.1016/j.jhazmat.2013.08.076 [37] PAIKARAY S. Environmental Stability of Schwertmannite: A Review[J]. Mine Water and the Environment, 2020, 40(3): 570 − 586. [38] VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from Schwertmannite: Effect of fulvic acid[J]. Chemical Geology, 2014, 372: 1 − 11. doi: 10.1016/j.chemgeo.2014.02.012 [39] CARABALLO M A, RIMSTIDT J D, MACíAS F, et al. Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of Schwertmannite solubility[J]. Chemical Geology, 2013, 360-361: 22 − 31. doi: 10.1016/j.chemgeo.2013.09.023 [40] BURTON E D, JOHNSTON S G, KRAAL P, et al. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of Schwertmannite[J]. Environmental Science & Technology, 2013, 47(5): 2221 − 2229. [41] KUBICKI J D, TUNEGA D, KRAEMER S. A density functional theory investigation of oxalate and Fe(II) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution[J]. Chemical Geology, 2017, 464: 14 − 22. doi: 10.1016/j.chemgeo.2016.08.010 [42] DOU X, MOHAN D, PITTMAN C U, JR. Arsenate adsorption on three types of granular Schwertmannite[J]. Water Research, 2013, 47(9): 2938 − 2948. doi: 10.1016/j.watres.2013.01.035 [43] ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on Schwertmannite: surface adsorption vs anion-exchange[J]. Journal of Colloid and Interface Science, 2012, 386(1): 338 − 343. doi: 10.1016/j.jcis.2012.07.008 [44] GAN M, SUN S, ZHENG Z, et al. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite[J]. Applied Surface Science, 2015, 356: 986 − 997. doi: 10.1016/j.apsusc.2015.08.200 [45] HERMASSI M, GRANADOS M, VALDERRAMA C, et al. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource[J]. Science of The Total Environment, 2022, 810: 152258. doi: 10.1016/j.scitotenv.2021.152258 [46] MA S, JING J, LIU P, et al. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through Schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation[J]. Journal of Hazardous Materials, 2020, 392: 122437. doi: 10.1016/j.jhazmat.2020.122437 [47] LI T, WANG Z, ZHANG Z, et al. Organic carbon modified Fe3O4/Schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation[J]. Separation and Purification Technology, 2021, 276. [48] LIU L D, WANG W M, LIU L, et al. Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: Implications for phenol oxidation under acidic conditions[J]. Applied Catalysis B:Environmental, 2016, 185: 371 − 377. doi: 10.1016/j.apcatb.2015.12.010 [49] ZHU Y, ZENG C, ZHU R, et al. TiO2/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process[J]. Journal of Environmental Sciences (China), 2019, 80: 208 − 217. doi: 10.1016/j.jes.2018.12.014 [50] DUAN H, LIU Y, YIN X, et al. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system[J]. Chemical Engineering Journal, 2016, 283: 873 − 879. doi: 10.1016/j.cej.2015.08.033 [51] YANG G C C, HUANG S C, WANG C L, et al. Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale Schwertmannite[J]. Chemosphere, 2016, 159: 282 − 292. doi: 10.1016/j.chemosphere.2016.04.119 [52] LI X, ZHANG Y, XIE Y, et al. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized Schwertmannite catalyst[J]. Journal of Hazardous Materials, 2018, 344: 689 − 697. doi: 10.1016/j.jhazmat.2017.11.019 [53] 王鹤茹, 宋永伟, 徐峙辉, 等. 化学合成施氏矿物与 H2O2共存体系下光化学处理垃圾渗滤液的研究[J]. 环境科学, 2014, 35(4): 1407 − 1413. [54] LI T, ZHU P, WANG D, et al. Efficient utilization of the electron energy of antibiotics to accelerate Fe(III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/Schwertmannite[J]. Environmental research, 2022, 209: 112830. doi: 10.1016/j.envres.2022.112830 [55] CHAI L, TANG J, LIAO Y, et al. Biosynthesis of Schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil[J]. Journal of Soils and Sediments, 2016, 16(10): 2430 − 2438. doi: 10.1007/s11368-016-1449-7 [56] YANG Z, WU Z, LIAO Y, et al. Combination of microbial oxidation and biogenic Schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil[J]. Chemosphere, 2017, 181: 1 − 8. doi: 10.1016/j.chemosphere.2017.04.041