-
催化臭氧氧化作为一项具有实际应用前景的高级氧化技术,在药品及个人护理品(Pharmaceuticals and personal care products, PPCPs)污染水治理领域得到广泛关注。因PPCPs在应用中不能被人体和动物体完全吸收利用,常以母体或代谢物形式持续进入环境,以伪持续状态存在于环境中,致使在水环境中被频繁检出。中国长江中的PPCPs浓度最高达115.20 ng/L[1];巴西Paraopeba河流中的PPCPs浓度处于0.43~40.60 ng/L[2];肯尼亚的一些河流中其浓度更是达到1 μg/L[3]。若该类物质长期存在于环境中,则会对生态环境及生物造成严重影响。因此,当务之急是开发有效和先进的技术去除水环境中的这类物质。
近年来,高级氧化技术(Advanced Oxidation Processes,AOPs)被广泛用于处理各种有机污染物。该技术生成的高活性氧化自由基(例如羟基自由基(•OH, E0= 2.7 V)和超氧自由基(O2•−, E0 = −0.33 V))对PPCPs具有很强的降解能力[4]。目前常用的AOPs主要有光催化[5]、光芬顿[6]、模拟太阳光与Fe2+ 和过硫酸盐的组合体系[7]以及臭氧氧化技术[8]等。臭氧氧化技术作为一种高级氧化技术中常被用于水处理或者水质净化。然而,单一的臭氧氧化存在一定缺点,例如,对污染物选择性高、氧化不完全,及由于溶解度低和不稳定性而导致臭氧利用效率低等[9]。因此,研究人员致力于克服上述缺点,催化臭氧氧化通常被认为是一种可靠的方法,因其不仅可以促进臭氧分解,且不需额外添加化学物质能量[10]。本文归纳了不同类型催化剂在臭氧催化体系中可能的催化机理,总结了不同因素对催化臭氧体系对污染物降解的影响;并对以催化臭氧氧化为基础的高级氧化技术在对环境中PPCPs降解和矿化中的工艺应用分析和总结,旨在为催化臭氧氧化研究及应用提供参考。
催化臭氧氧化去除水中PPCPs的作用机制及工艺研究进展
Research progress on the mechanism and the process of catalytic ozonation to remove PPCPs in water
-
摘要: 臭氧催化剂不仅可以提高对臭氧利用效率,还可以提高对污染物的去除效率。因此开发高效催化剂并促进催化臭氧氧化技术的实际应用是当今研究热点。文章对国内外近年来催化臭氧相关文献总结分析,归纳了常用的催化剂类型,分析了不同类型催化剂的可能催化机制,总结了多种因素对催化臭氧降解PPCPs效率的影响规律和开发的耦合工艺,展望了非均相催化臭氧氧化在PPCPs治理领域的应用,同时也提出了非均相催化臭氧氧化技术存在的问题。Abstract: The ozone catalyst could not only improve the utilization efficiency of ozone, but also enhance the removal efficiency of pollutants. Hence, the development of high-efficiency catalysts and the practical application of catalytic ozonation technology are the current research hotspots. The paper summarized and analyzed the literature related to catalytic ozone in recent years. Importantly, the possible catalytic mechanism of different types of catalysts, the influence of various factors on the efficiency of ozone catalytic degradation of PPCPs and the developed coupling process were summarized. The application of heterogeneous catalytic ozonation in the field of PPCPs treatment was prospected, and the existing problems of heterogeneous catalytic ozonation technology were also proposed.
-
Key words:
- PPCPs /
- advanced oxidation /
- catalytic mechanism /
- factors /
- application
-
表 1 金属及金属氧化物负载对PPCPs的去除
Table 1. Removal of PPCPs by metal and metal oxide carrier
催化剂 条件 污染物 去除效率 参考文献 MnO2 /陶粒 pH = 3.11; 催化剂量4.0 g•L−1;气体流速400 mL•min−1; 臭氧浓度
20.25 mg•L−1; 反应体积1.0 L; 反应时间 90 min医疗废水 催化体系:TOC去除率13.24%;
单独臭氧:TOC去除率:1.37%[51] Fe2O3/Al2O3@SBA-15 pH = 7; 催化剂量1.5 g•L−1;臭氧浓度30 mg•L−1;污染物浓度 10 mg•L−1;反应时间60 min 布洛芬 催化体系:TOC去除率90%;
单独臭氧:TOC去除率:26%[52] Mn/ZnO pH = 7.2; 催化剂量0.8 g•L−1;臭氧浓度2 mg•min−1;污染物浓度 20 mg•L−1;反应时间9 min 异烟肼 催化体系:TOC去除率12.3%,物质去除率76.3%;
单独臭氧:TOC去除率:0%,物质去除率50.5%[53] Co–Ce/MCM-48 pH = 7.2; 催化剂量0.2 g•L−1;臭氧浓度1.67 mg•min−1;污染物浓度 10 mg•L−1;反应时间120 min 氯贝酸
磺胺二甲基嘧啶
双氯芬酸钠催化体系:TOC去除率24.1%,15.9%,33.7%;物质去除率83.6%,51.7%,86.8% [54] MnOx/SBA-15 pH = 7; 催化剂量0.1 g•L−1;臭氧浓度1.67 mg•min−1;污染物浓度 10 mg•L−1; 反应时间60 min 诺氟沙星 催化体系:TOC去除率54%
单独臭氧:TOC去除率:18%[55] -
[1] YAN Z, YANG H, DONG H, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion[J]. Environmental Pollution, 2018, 239: 223 − 232. doi: 10.1016/j.envpol.2018.04.023 [2] DE BARROS A L C, SCHMIDT F F, DE AQUINO S F, et al. Determination of nine pharmaceutical active compounds in surface waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS[J]. Environmental Science Pollution Research, 2018, 25(20): 19962 − 19974. doi: 10.1007/s11356-018-2123-y [3] K O, KANDIE F J, VERGEYNST L, et al. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya[J]. Science of the Total Environment, 2018, 637-638: 336 − 348. doi: 10.1016/j.scitotenv.2018.04.331 [4] SOMENSI C A, SIMIONATTO E L, BERTOLI S L, et al. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater[J]. Journal of Hazardous Materials, 2010, 175(1-3): 235 − 240. doi: 10.1016/j.jhazmat.2009.09.154 [5] LIU X, YANG Y, LI H, et al. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots, Chemical Engineering Journal [J]. 2021, 408: 127259-127271. [6] AMILDON R I, PAIVA V A B, PANIAGUA C E S, et al. Chloramphenicol photo-Fenton degradation and toxicity changes in both surface water and a tertiary effluent from a municipal wastewater treatment plant at near-neutral conditions[J]. Chemical Engineerring Journal, 2018, 347: 763 − 770. doi: 10.1016/j.cej.2018.04.169 [7] CAO Y, QIU W, ZHAO Y, et al. The degradation of chloramphenicol by O3/PMS and the impact of O3-based AOPs pre-oxidation on dichloroacetamide generation in post-chlorination[J]. Chemical Engineering Journal, 2020, 401: 126146 − 126155. doi: 10.1016/j.cej.2020.126146 [8] LIU X, YANG Z, ZHU W, et al. Catalytic ozonation of chloramphenicol with manganese-copper oxides/maghemite in solution: Empirical kinetics model, degradation pathway, catalytic mechanism, and antibacterial activity[J]. Journal of Environmental Management, 2022, 302: 114043 − 114053. doi: 10.1016/j.jenvman.2021.114043 [9] WANG J, CHEN H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective [J]. Science of the Total Environment, 2020, 704 : 135249-135266. [10] VANAKEN R V d B P, DEGREVE J, DEWIL R. The effect of ozonation on the toxicity and biodegradability of 2, 4-dichlorophenol-containing wastewater[J]. Chemical Engineerring Journal, 2015, 280: 728 − 736. [11] SKOUMAL M, CABOT P L, CENTELLAS F, et al. Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light[J]. Applied Catalysis B:Environmental, 2006, 66: 228 − 240. doi: 10.1016/j.apcatb.2006.03.016 [12] GUO Y, WANG H, WANG B, et al. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model[J]. Water Research, 2018, 142: 383 − 395. doi: 10.1016/j.watres.2018.06.019 [13] BELTRAN F J, RIVAS F J. MONTERO-DE-ESPINOSA R, Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 1. homogeneous catalytic ozonation[J]. Industrial & Engineering Chemistry Research, 2003, 42: 3210 − 3217. [14] PERA-TITUS M, GARCIA-MOLINA V, BANOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review[J]. Applied Catalysis B:Environmental, 2004, 47: 219 − 256. doi: 10.1016/j.apcatb.2003.09.010 [15] SAULEDA R, BRILLAS E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light [J]. Applied Catalysis B: Environmental, 2001, 29: 135-145. [16] MA J, GRAHAM N J D. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances [J]. Water Research, 1999, 33: 785-793. [17] TRAPIDO M, VERESSININA Y, MUNTER R, et al. Catalytic ozonation of m-dinitrobenzene[J]. Ozone:Science & Engineering, 2005, 27: 359 − 363. [18] WU C H, KUO C Y, CHANG C L. Homogeneous catalytic ozonation of C. I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. Journal of Hazardous Materials, 2008, 154: 748 − 755. doi: 10.1016/j.jhazmat.2007.10.087 [19] PINES D S, RECKHOW D A. Effect of dissolved cobalt(II) on the ozonation of oxalic acid [J]. Environment Science & Technology, 2002, 36(19): 4046-4051. [20] 韩帮军. 臭氧催化氧化除污染特性及其生产应用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007. [21] MA J, GRAHAM N J D. Preliminary investigation of manganese-catalyzed ozonation for the destruction of atrazine[J]. Ozone: Science & Engineering, 1997, 19: 227 − 240. [22] TONG S P, LIU W P, LENG W H, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere, 2003, 50: 1359 − 1364. doi: 10.1016/S0045-6535(02)00761-0 [23] NAWAZ F, CAO H, XIE Y, et al. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol[J]. Chemosphere, 2017, 168: 1457 − 1466. doi: 10.1016/j.chemosphere.2016.11.138 [24] PARK J S, CHOI H, AHN K H, et al. Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite[J]. Ozone:Science & Engineering, 2004, 26: 141 − 151. [25] PARK J S, CHOI H, CHO J. Kinetic decomposition of ozone and para-chlorobenzoic acid (p-CBA) during catalytic ozonation [J]. Water Research, 2004, 38: 2284-2291. [26] YIN R, GUO W, ZHOU X, et al. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism[J]. RSC Advances, 2016, 6: 19265 − 19270. doi: 10.1039/C5RA25994K [27] CHEN J N, NI C H. Heterogeneous catalytic ozonation of 2-chlorophenol queous solution with alumina as a catalyst [J]. Water Science and Technology, 2001, 43: 213-220. [28] KASPRZYK B, AWROCKI J N. Preliminary results on ozonation enhancement by a perfluorinated bonded alumina phase [J]. Ozone: Science & Engineering, 2007, 24: 63-68. [29] KASPRZYK-HORDEM B, ANDRZEJEWSKI P, DABROWSKA A, et al. MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process[J]. Applied Catalysis B:Environmental, 2004, 51: 51 − 66. doi: 10.1016/j.apcatb.2004.02.004 [30] CHEN L, QI F, XU B, et al. The efficiency and mechanism of γ-alumina catalytic ozonation of 2-methylisoborneol in drinking water[J]. Water Supply, 2006, 6: 43 − 51. [31] QI F, CHEN Z, XU B, et al. Influence of surface texture and acid–base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides[J]. Applied Catalysis B:Environmental, 2008, 84: 684 − 690. doi: 10.1016/j.apcatb.2008.05.027 [32] SULIGOJ A, KETE M, CERNIGOJ U, et al. Synergism in TiO2 photocatalytic ozonation for the removal of dichloroacetic acid and thiacloprid[J]. Environmental Research. Section A, 2021, 197: 110982. doi: 10.1016/j.envres.2021.110982 [33] MU J, LI S, WANG J, et al. Efficient catalytic ozonation of bisphenol A by three-dimensional mesoporous CeOx-loaded SBA-16[J]. Chemosphere, 2021, 278: 130412. doi: 10.1016/j.chemosphere.2021.130412 [34] ZHANG Z, AI H, FU M L, et al. A new insight into catalytic ozonation of ammonia by MgO/Co3O4 composite: The effects, reaction kinetics and mechanism[J]. Chemical Engineering Journal, 2021, 418: 129461. doi: 10.1016/j.cej.2021.129461 [35] ZHANG L H, ZHOU J, LIU Z Q, et al. Mesoporous CeO2 catalyst synthesized by using cellulose as template for the ozonation of phenol[J]. Ozone:Science & Engineering, 2018, 41: 166 − 174. [36] ROSAL R, RODRIGUEZ A, GONZALO M S, et al. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide[J]. Applied Catalysis B:Environmental, 2008, 84: 48 − 57. doi: 10.1016/j.apcatb.2008.03.003 [37] MESSELE S A, CHELME-AYALA P, GAMAL E M. Catalytic ozonation of naphthenic acids in the presence of carbon-based metal-free catalysts: Performance and kinetic study [J]. Catalysis Today, 2021, 361: 102-108. [38] RESTIVO J, ORGE C A, GUEDES G, et al. Nanostructured layers of mechanically processed multiwalled carbon nanotubes for catalytic ozonation of organic pollutants[J]. ACS Applied Nano Materials, 2020, 3: 5271 − 5284. doi: 10.1021/acsanm.0c00662 [39] XU J, LI Y, QIAN M, et al. Amino-functionalized synthesis of MnO2-NH2-GO for catalytic ozonation of cephalexin[J]. Applied Catalysis B:Environmental, 2019, 256: 117797. doi: 10.1016/j.apcatb.2019.117797 [40] JANS U, HOIGNE J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals [J]. Ozone: Science & Engineering, 1998, 20: 67-90. [41] BELTRAN F J, POCOSTALES J P, ALVAREZ P M, et al. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions[J]. Journal of Hazardous Materials, 2009, 169: 532 − 538. doi: 10.1016/j.jhazmat.2009.03.127 [42] YOON Y, OH H, AHN Y T, et al. Evaluation of the O3/graphene-based materials catalytic process: pH effect and iopromide removal[J]. Catalysis Today, 2017, 282: 77 − 85. doi: 10.1016/j.cattod.2016.03.014 [43] GONCALVES A G, ORFAO J J, PEREIRA M F. Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways [J]. Journal of Hazardous Materials, 2012, 239-240: 167-174. [44] BELTRAN F J, RIVAS F J, FERNANDEZ L A, et al. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon[J]. Industrial & Engineering Chemistry Research, 2002, 41: 6510 − 6517. [45] FARIA P C C, ÓRFAO J J M, PEREIRA M F R. Activated carbon catalytic ozonation of oxamic and oxalic acids [J]. Applied Catalysis B: Environmental, 2008, 79 : 237-243. [46] LIU Z Q, MA J, CUI Y H, et al. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube[J]. Applied Catalysis B:Environmental, 2009, 92: 301 − 306. doi: 10.1016/j.apcatb.2009.08.007 [47] LIU X, LI H, FANG Y, et al. Heterogeneous catalytic ozonation of sulfamethazine in aqueous solution using maghemite-supported manganese oxides[J]. Separation and Purification Technology, 2021, 274: 118945 − 118956. doi: 10.1016/j.seppur.2021.118945 [48] XIE Y, PENG S, FENG Y, et al. Enhanced mineralization of oxalate by highly active and stable Ce(III)-Doped g-C3N4 catalyzed ozonation[J]. Chemosphere, 2019, 239: 124612. [49] DONG T, LIU W, MA M, et al. Hierarchical zeolite enveloping Pd-CeO2 nanowires: An efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation[J]. Chemical Engineering Journal, 2020, 393: 124717. doi: 10.1016/j.cej.2020.124717 [50] CHEN H, WANG J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14 − 24. [51] WEN S, CHEN L, LI W, et al. Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation[J]. Scientific Reports, 2018, 8(1): 9581. doi: 10.1038/s41598-018-27921-0 [52] BING J, HU C, NIE Y, et al. Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen[J]. Environmental Science & Technology, 2015, 49: 1690 − 1697. [53] SHEN T, ZHANG X, LIN K A, et al. Solid base Mg-doped ZnO for heterogeneous catalytic ozonation of isoniazid: Performance and mechanism[J]. Science of the Total Environment, 2020, 703: 134983 − 134995. doi: 10.1016/j.scitotenv.2019.134983 [54] LI S, LI X, WU H, et al. Mechanism of synergistic effect on electron transfer over Co-Ce/MCM-48 during ozonation of pharmaceuticals in water[J]. ACS Applied Material Interfaces, 2019, 11: 23957 − 23971. doi: 10.1021/acsami.9b02143 [55] CHEN W, LI X, PAN Z, et al. Synthesis of MnOx/SBA-15 for norfloxacin degradation by catalytic ozonation[J]. Seperation and Purification Technology, 2017, 173: 99 − 104. doi: 10.1016/j.seppur.2016.09.030 [56] IAKOVIDES I C, MICHAEL-KORDATOU I, MOREIRA N F F, et al. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity[J]. Water Research, 2019, 159: 333 − 347. doi: 10.1016/j.watres.2019.05.025 [57] TERNES T A, STUBER J, HERRMANN N, et al. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater[J]. Water Research, 2003, 37: 1976 − 1982. doi: 10.1016/S0043-1354(02)00570-5 [58] DE WITTE B, DEWULF J, DEMEESTERE K, et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. Journal of Hazardous Materials, 2009, 161: 701 − 708. doi: 10.1016/j.jhazmat.2008.04.021 [59] AKMEHMET BALCIOGLU I, ÖTKER M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J]. Chemosphere, 2003, 50: 85-95. [60] FENG M, YAN L, ZHANG X, et al. Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation[J]. Science of the Total Environment, 2016, 541: 167 − 175. doi: 10.1016/j.scitotenv.2015.09.048 [61] ROTH J A, SULLIVAN D E. Solubility of ozone in water[J]. Industrial & Engineering Chemistry Fundamentals, 2002, 20: 137 − 140. [62] MEIJERS R T, ODERWALD-MULLER E, NUHN P A N M, et al. Degradation of pesticides by ozonation and advanced oxidation[J]. Ozone:Science & Engineering, 1995, 17: 673 − 686. [63] HUANG Y, CUI C, ZHANG D, et al. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon[J]. Chemosphere, 2015, 119: 295 − 301. doi: 10.1016/j.chemosphere.2014.06.060 [64] QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation [J]. Chemical Engineering Journal, 2015, 262: 552-562. [65] TONG S P, SHI R, ZHANG H, et al. Kinetics of Fe3O4-CoO/Al2O3 catalytic ozonation of the herbicide 2-(2, 4-dichlorophenoxy) propionic acid[J]. Journal of Hazardous Materials, 2011, 185: 162 − 167. doi: 10.1016/j.jhazmat.2010.09.013 [66] BAI Z Y, YANG Q, WANG J L. Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid [J]. International Journal of Environmental Science and Technology, 2015, 13: 483-492. [67] WU C, LI P, XIA S, et al. The role of interface in microbubble ozonation of aromatic compounds[J]. Chemosphere, 2019, 220: 1067 − 1074. doi: 10.1016/j.chemosphere.2018.12.174 [68] CHAVEZ A M, QUINONES D H, REY A, et al. Simulated solar photocatalytic ozonation of contaminants of emerging concern and effluent organic matter in secondary effluents by a reusable magnetic catalyst[J]. Chemical Engineering Journal, 2020, 398: 125642. doi: 10.1016/j.cej.2020.125642 [69] ARAM M, FARHADIAN M, SOLAIMANG N A R, et al. Metronidazole and cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection[J]. Journal of Molecular Liquids, 2020, 304: 112764. doi: 10.1016/j.molliq.2020.112764 [70] KISHIMOTO N, MORITA Y, TSUNO H, et al. Advanced oxidation effect of ozonation combined with electrolysis[J]. Water Research, 2005, 39: 4661 − 4672. doi: 10.1016/j.watres.2005.09.001 [71] 陈思, 钛镀稀有金属电极电催化臭氧降解水中有机药物的效果研究 [D]. 重庆: 重庆大学, 2015. [72] ZHAN J, LI Z, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes[J]. Separation and Purification Technology, 2019, 208: 12 − 18. doi: 10.1016/j.seppur.2018.06.030 [73] YANG L, SHENG M, LI Y, et al. A hybrid process of Fe-based catalytic ozonation and biodegradation for the treatment of industrial wastewater reverse osmosis concentrate[J]. Chemosphere, 2020, 238: 124639. doi: 10.1016/j.chemosphere.2019.124639 [74] AGHAPOUR A A, MOUSSAVI G, YAGHMAEIAN K. Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor[J]. Journal of Environmental Management, 2015, 157: 262 − 266.