土壤-作物系统重金属污染及防治研究进展
Research Progress on Heavy Metals Pollution and Its Control in Soil-Crop System
-
摘要: 我国土壤污染中无机污染占比较大,而无机污染中重金属污染问题尤为突出。当前,由于工农业生产、矿产开采、燃料燃烧和车辆排放等各种人类活动,土壤-作物系统中的重金属污染状况正在恶化,且农产品受重金属影响日趋严重。本文概括了土壤-作物系统中重金属的来源、危害,阐述了该系统重金属的污染现状及人体健康风险评价,着重分析了重金属生物有效性对人体健康风险的影响,总结了当前用于治理土壤重金属污染的修复技术和防控措施,以期为土壤污染修复及防治工作提供参考,降低土壤重金属污染产生的人体健康风险,保障食物安全。Abstract: Soil contamination in China mainly involves inorganic pollution. Of all types of inorganic pollution, heavy metals in the soil puts forward rigorous challenges to the environment. Admittedly, human activities such as industrial and agricultural production, mineral exploration, fuel combustion, and vehicle emissions have unavoidably introduced heavy metals to the soil-crop system constantly, resulting in an increasingly severe impact on agricultural products. This study was carried out to address the following specific objectives:(1) review the sources of heavy metal pollutants and their harm to the soil-crop system, (2) elaborate on the status quo of heavy metal pollution in the system, and further assess the potential human health risks, (3) sum up current soil remediation technologies and control measures to provide references for reducing health risks and guaranteeing food safety.
-
Key words:
- heavy metals /
- soil-crop system /
- human health risks /
- sources /
- hazards /
- bioavailability
-
-
Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642:690-700 Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China:A meta-analysis[J]. Science of the Total Environment, 2019, 651:3034-3042 Zhu D W, Wei Y, Zhao Y H, et al. Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, northwestern China[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(2):178-184 Gebrekidan A, Weldegebriel Y, Hadera A, et al. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel River near Sheba Tannery, Tigray, Northern Ethiopia[J]. Ecotoxicology and Environmental Safety, 2013, 95:171-178 Islam M S, Proshad R, Asadul Haque M, et al. Assessment of heavy metals in foods around the industrial areas:Health hazard inference in Bangladesh[J]. Geocarto International, 2020, 35(3):280-295 Du Y, Hu X F, Wu X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China[J]. Environmental Monitoring and Assessment, 2013, 185(12):9843-9856 Zwolak A, Sarzyńska M, Szpyrka E, et al. Sources of soil pollution by heavy metals and their accumulation in vegetables:A review[J]. Water, Air, & Soil Pollution, 2019, 230(7):1-9 Hu B F, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266:114961 Huang J H, Peng S Y, Mao X M, et al. Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county[J]. Process Safety and Environmental Protection, 2019, 126:339-347 Bakhat H F, Zia Z, Abbas S, et al. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems[J]. Groundwater for Sustainable Development, 2019, 9:100263 Zhang X W, Yan Y, Wadood S A, et al. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis[J]. Applied Geochemistry, 2020, 123:104776 Li X Y, Zhang J R, Ma J, et al. Status of chromium accumulation in agricultural soils across China (1989-2016)[J]. Chemosphere, 2020, 256:127036 熊琼仙, 李正龙, 熊敏. 浅谈土壤中Pb2+的污染及修复研究现状[J]. 广州化工, 2019, 47(17):135-137 Xiong Q X, Li Z L, Xiong M. A brief discussion on research status of Pb2+ pollution and remediation technology in soil[J]. Guangzhou Chemical Industry, 2019, 47(17):135-137(in Chinese)
Liu S J, Wang X D, Guo G L, et al. Status and environmental management of soil mercury pollution in China:A review[J]. Journal of Environmental Management, 2021, 277:111442 王慧. 重金属Cu、Zn和Cd胁迫对小麦生长和土壤理化性质的影响[D]. 青岛:青岛农业大学, 2017:50-53 Wang H. Effects of heavy metal Cu, Zn and Cd stress on wheat growth and soil physical and chemical properties[D]. Qingdao:Qingdao Agricultural University, 2017:50 -53(in Chinese)
翁娜, 韩潇. 重金属污染对土壤酶活性影响的研究进展[J]. 农业开发与装备, 2016(10):34-35, 39 薛鲁燕, 张海峰, 蔡葵, 等. 论农田土壤重金属污染的危害及修复技术[J]. 农业与技术, 2020, 40(13):41-42 Kotecha M, Medhavi, Chaudhary S, et al. Metals, Crops and Agricultural Productivity:Impact of Metals on Crop Loss[M]//Plant-Metal Interactions. Cham:Springer International Publishing, 2019:191-216 吴金涛, 陈霞. 重金属镉对农产品的污染及其防治措施[J]. 农家参谋, 2020(15):226, 228 李玘. 土壤中重金属污染的原因、危害及解决措施[J]. 科技与创新, 2019(12):92-93 张倩, 杜海云, 孙家正, 等. 我国果园土壤和果品中砷污染现状及控制措施建议[J]. 山东农业科学, 2015, 47(7):131-135 Zhang Q, Du H Y, Sun J Z, et al. Pollution status and control measures of arsenic in fruits and orchard soil in China[J]. Shandong Agricultural Sciences, 2015, 47(7):131-135(in Chinese)
王瑶瑶, 郝毅, 张洪, 等. 珠三角地区大米中的镉砷污染现状及治理措施[J]. 中国农学通报, 2019, 35(12):63-72 Wang Y Y, Hao Y, Zhang H, et al. Cadmium and arsenic pollution in rice in the Pearl River Delta and the countermeasures[J]. Chinese Agricultural Science Bulletin, 2019, 35(12):63-72(in Chinese)
王晓男. 土壤重金属污染防治措施研究进展综述[J]. 安徽农业科学, 2014, 42(29):10070-10071 Wang X N. Review on research advances of measures of soil heavy metal pollution control[J]. Journal of Anhui Agricultural Sciences, 2014, 42(29):10070-10071(in Chinese)
冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(Z1):436-457 Feng X B, Qiu G L, Fu X W, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 21(Z1):436-457(in Chinese)
谢世强. 大气中不同形态汞的迁移转化[J]. 中国化工贸易, 2017, 9(14):243 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2020-12-15]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. Xie S W, Yang F, Feng H X, et al. Assessment of potential heavy metal contamination in the peri-urban agricultural soils of 31 provincial capital cities in China[J]. Environmental Management, 2019, 64(3):366-380 Wang G Y, Zhang S R, Xiao L Y, et al. Heavy metals in soils from a typical industrial area in Sichuan, China:Spatial distribution, source identification, and ecological risk assessment[J]. Environmental Science and Pollution Research, 2017, 24(20):16618-16630 葛晓颖, 欧阳竹, 杨林生, 等. 环渤海地区土壤重金属富集状况及来源分析[J]. 环境科学学报, 2019, 39(6):1979-1988 Ge X Y, Ouyang Z, Yang L S, et al. Concentration, risk assessment and sources of heavy metals in soil around Bohai Rim[J]. Acta Scientiae Circumstantiae, 2019, 39(6):1979-1988(in Chinese)
Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research International, 2018, 25(2):1055-1069 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4):452-458 Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4):452-458(in Chinese)
赵其国, 黄国勤, 钱海燕. 生态农业与食品安全[J]. 土壤学报, 2007, 44(6):1127-1134 Zhao Q G, Huang G Q, Qian H Y. Ecological agriculture and food safety[J]. Acta Pedologica Sinica, 2007, 44(6):1127-1134(in Chinese)
李思民, 王豪吉, 朱曦, 等. 土壤pH和有机质含量对重金属可利用性的影响[J]. 云南师范大学学报:自然科学版, 2021, 41(1):49-55 Li S M, Wang H J, Zhu X, et al. Effects of soil pH and organic matter on the content of bioavailable heavy metals[J]. Journal of Yunnan Normal University:Natural Sciences Edition, 2021, 41(1):49-55(in Chinese)
Wang S Y, Wu W Y, Liu F, et al. Accumulation of heavy metals in soil-crop systems:A review for wheat and corn[J]. Environmental Science and Pollution Research, 2017, 24(18):15209-15225 Peng J Y, Li F X, Zhang J Q, et al. Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province[J]. Environmental Geochemistry and Health, 2020, 42(12):4369-4383 Tang L, Deng S H, Tan D, et al. Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake area, China[J]. Environmental Science and Pollution Research, 2019, 26(17):17655-17665 中华人民共和国国家卫生和计划生育委员会, 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量:GB 2762-2017[J]. 中国食品卫生杂志, 2018, 30(3):329-340 Ye X Z, Xiao W D, Zhang Y Z, et al. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang Province, China[J]. Environmental Monitoring and Assessment, 2015, 187(6):1-9 Zhong T Y, Xue D W, Zhao L M, et al. Concentration of heavy metals in vegetables and potential health risk assessment in China[J]. Environmental Geochemistry and Health, 2018, 40(1):313-322 Kaur M, Kumar A, Mehra R, et al. Human health risk assessment from exposure of heavy metals in soil samples of Jammu District of Jammu and Kashmir, India[J]. Arabian Journal of Geosciences, 2018, 11(15):1-15 Zhuo H M, Fu S Z, Liu H, et al. Soil heavy metal contamination and health risk assessment associated with development zones in Shandong, China[J]. Environmental Science and Pollution Research, 2019, 26(29):30016-30028 Wu J, Lu J, Li L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau[J]. Chemosphere, 2018, 201:234-242 Mamat A, Zhang Z Y, Mamat Z, et al. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China[J]. Environmental Geochemistry and Health, 2020, 42(11):3949-3963 Karimyan K, Alimohammadi M, Maleki A, et al. Human health and ecological risk assessment of heavy metal(loid)s in agricultural soils of rural areas:A case study in Kurdistan Province, Iran[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2):469-481 United States Environmental Protection Agency (US EPA). Risk assessment guidance for Superfund. Volume 1. Human health evaluation manual. Part A. (Interim final). EPA/540/189/002; PB90-155581[R]. Washington DC:Office of Solid Waste and Emergency Response, US EPA, 1989 United States Environmental Protection Agency (US EPA). Guidance for performing aggregate exposure and risk assessments[R]. Washington DC:Office of Pesticide Programs, US EPA, 1999 United States Environmental Protection Agency (US EPA). Exposure factors handbook EPA/600/P-95/002 FA (Update to exposure factors handbook (EPA/600/8-89/043))[R]. Washington DC:US EPA, 1997 Pan L B, Ma J, Hu Y, et al. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical County in Shanxi Province, China[J]. Environmental Science and Pollution Research, 2016, 23(19):19330-19340 Wang Z H, Qin H Y, Liu X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China[J]. Environmental Science and Pollution Research, 2019, 26(6):5904-5912 Yang W X, Wang D, Wang M K, et al. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China[J]. Environmental Monitoring and Assessment, 2019, 191(7):1-12 Yu R A, He L F, Cai R D, et al. Heavy metal pollution and health risk in China[J]. Global Health Journal, 2017, 1(1):47-55 Zeng S Y, Ma J, Yang Y J, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687:642-653 Sun G X, van de Wiele T, Alava P, et al. Arsenic in cooked rice:Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract[J]. Environmental Pollution, 2012, 162:241-246 Signes-Pastor A J, Al-Rmalli S W, Jenkins R O, et al. Arsenic bioaccessibility in cooked rice as affected by arsenic in cooking water[J]. Journal of Food Science, 2012, 77(11):T201-T206 Zhuang P, Zhang C S, Li Y W, et al. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test[J]. Food Chemistry, 2016, 213:206-214 Liao W, Wang G, Li K M, et al. Effect of cooking on speciation and in vitro bioaccessibility of Hg and as from rice, using ordinary and pressure cookers[J]. Biological Trace Element Research, 2019, 187(1):329-339 Yin N Y, Zhang Z N, Cai X L, et al. In vitro method to assess soil arsenic metabolism by human gut microbiota:Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17):10675-10681 Yin N Y, Wang P F, Li Y, et al. Arsenic in rice bran products:In vitro oral bioaccessibility, arsenic transformation by human gut microbiota, and human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 2019, 67(17):4987-4994 Girard C, Charette T, Leclerc M, et al. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans[J]. Science of the Total Environment, 2018, 616-617:863-874 Torres-Escribano S, Ruiz A, Barrios L, et al. Influence of mercury bioaccessibility on exposure assessment associated with consumption of cooked predatory fish in Spain[J]. Journal of the Science of Food and Agriculture, 2011, 91(6):981-986 Lin H F, Santa-Rios A, Barst B D, et al. Occurrence and bioaccessibility of mercury in commercial rice samples in Montreal (Canada)[J]. Food and Chemical Toxicology, 2019, 126:72-78 Liao W, Wang G, Zhao W B, et al. Change in mercury speciation in seafood after cooking and gastrointestinal digestion[J]. Journal of Hazardous Materials, 2019, 375:130-137 Jadán Piedra C, Sánchez V, Vélez D, et al. Reduction of mercury bioaccessibility using dietary strategies[J]. LWT-Food Science and Technology, 2016, 71:10-16 Wang L H, Yin X X, Gao S L, et al. In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China[J]. Chemosphere, 2020, 252:126522 Medlin A E. An in vitro method for estimating the relative bioavailability of lead in humans[D]. Colorado:University of Colorado, 1997:243-249 Ruby M V, Davis A, Link T E, et al. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead[J]. Environmental Science & Technology, 1993, 27(13):2870-2877 Oomen A G, Hack A, Minekus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334 Rodriguez R R, Basta N T, Casteel S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649 Hack A, Selenka F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology Letters, 1996, 88(1-3):199-210 Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products[J]. Applied Microbiology and Biotechnology, 1999, 53(1):108-114 van de Wiele T R, Verstraete W, Siciliano S D. Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract[J]. Journal of Environmental Quality, 2004, 33(4):1343 Liu L, Wang Q, Wu X Y, et al. Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME)[J]. Environmental Pollution, 2020, 265:114399 Wang P F, Yin N Y, Cai X L, et al. Variability of chromium bioaccessibility and speciation in vegetables:The influence of in vitro methods, gut microbiota and vegetable species[J]. Food Chemistry, 2019, 277:347-352 Xu L Q, Yu C, Mao Y F, et al. Can flow-electrode capacitive deionization become a new in situ soil remediation technology for heavy metal removal?[J]. Journal of Hazardous Materials, 2021, 402:123568 Zhu Y, Xu F, Liu Q, et al. Nanomaterials and plants:Positive effects, toxicity and the remediation of metal and metalloid pollution in soil[J]. Science of the Total Environment, 2019, 662:414-421 Li X F. Technical solutions for the safe utilization of heavy metal-contaminated farmland in China:A critical review[J]. Land Degradation & Development, 2019, 30(15):1773-1784 Wu C, Dun Y, Zhang Z J, et al. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2020, 190:110091 Li N, Feng A X, Liu N, et al. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research, 2020, 27(16):20370-20379 -

计量
- 文章访问数: 5344
- HTML全文浏览数: 5344
- PDF下载数: 78
- 施引文献: 0