饮用水中新型环状消毒副产物的毒性研究进展

魏文哲, 罗家怡, 赵佳焱, 楚文海, 董慧峪, 周庆, 施鹏, 潘旸. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
引用本文: 魏文哲, 罗家怡, 赵佳焱, 楚文海, 董慧峪, 周庆, 施鹏, 潘旸. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
Wei Wenzhe, Luo Jiayi, Zhao Jiayan, Chu Wenhai, Dong Huiyu, Zhou Qing, Shi Peng, Pan Yang. Research Progress on Toxicity of New Cyclic Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
Citation: Wei Wenzhe, Luo Jiayi, Zhao Jiayan, Chu Wenhai, Dong Huiyu, Zhou Qing, Shi Peng, Pan Yang. Research Progress on Toxicity of New Cyclic Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002

饮用水中新型环状消毒副产物的毒性研究进展

    作者简介: 魏文哲(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:weiwenzhe1998@163.com
    通讯作者: 潘旸, E-mail: panyang@nju.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(51778280,52070093);江苏省优秀青年基金资助项目(BK20180058)

  • 中图分类号: X171.5

Research Progress on Toxicity of New Cyclic Disinfection Byproducts in Drinking Water

    Corresponding author: Pan Yang, panyang@nju.edu.cn
  • Fund Project:
  • 摘要: 饮用水中新型环状消毒副产物(disinfection byproducts,DBPs)因具有较高的生物毒性,受到越来越广泛的关注。本文简要概述了国内外饮用水中新型环状DBPs检测情况及暴露水平,重点探讨了新型环状DBPs的细胞毒性、遗传毒性和内分泌干扰效应,并总结了定量构效关系(quantitative structure-activity relationship,QSAR)在毒性效应预测方面的应用,旨在为新型环状DBPs的毒性及致毒机理研究提供理论参考。
  • 加载中
  • Calderon R L. The epidemiology of chemical contaminants of drinking water[J]. Food and Chemical Toxicology, 2000, 38:S13-S20
    Grünwald A, Št'astný B, Slavíčková K, et al. Formation of haloforms during chlorination of natural waters[J]. Acta Polytechnica, 2002, 42(2):234-243
    Richardson S D. Water analysis:Emerging contaminants and current issues[J]. Analytical Chemistry, 2007, 79(12):4295-4323
    Wagner E D, Plewa M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products:An updated review[J]. Journal of Environmental Sciences, 2017, 58:64-76
    Grellier J, Rushton L, Briggs D J, et al. Assessing the human health impacts of exposure to disinfection by-products-A critical review of concepts and methods[J]. Environment International, 2015, 78:61-81
    Wright J M, Evans A, Kaufman J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects[J]. Environmental Health Perspectives, 2017, 125(2):269-277
    Regli S, Chen J, Messner M, et al. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters[J]. Environmental Science & Technology, 2015, 49(22):13094-13102
    Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer:A review[J]. Water Research, 2019, 162:492-504
    Villanueva C M, Kogevinas M, Cordier S, et al. Assessing exposure and health consequences of chemicals in drinking water:Current state of knowledge and research needs[J]. Environmental Health Perspectives, 2014, 122(3):213-221
    King W D, Marrett L D. Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada)[J]. Cancer Causes & Control, 1996, 7(6):596-604
    Villanueva C M, Cantor K P, Cordier S, et al. Disinfection byproducts and bladder cancer:A pooled analysis[J]. Epidemiology, 2004, 15(3):357-367
    Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1-3):178-242
    Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23):7175-7185
    Zhai H Y, Zhang X R. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination[J]. Environmental Science & Technology, 2011, 45(6):2194-2201
    Zhai H Y, Zhang X R, Zhu X H, et al. Formation of brominated disinfection byproducts during chloramination of drinking water:New polar species and overall kinetics[J]. Environmental Science & Technology, 2014, 48(5):2579-2588
    Gong T T, Tao Y X, Zhang X R, et al. Transformation among aromatic iodinated disinfection byproducts in the presence of monochloramine:From monoiodophenol to triiodophenol and diiodonitrophenol[J]. Environmental Science & Technology, 2017, 51(18):10562-10571
    Hu S Y, Gong T T, Zhu H T, et al. Formation and decomposition of new iodinated halobenzoquinones during chloramination in drinking water[J]. Environmental Science & Technology, 2020, 54(8):5237-5248
    Pan Y, Wang Y, Li A M, et al. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Water Research, 2017, 112:129-136
    Huang Y, Li H, Zhou Q, et al. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water:Identification, decomposition, and control by ozone-activated carbon treatment[J]. Water Research, 2018, 146:298-306
    Qin F, Zhao Y Y, Zhao Y L, et al. A toxic disinfection by-product, 2,6-dichloro-1,4-benzoquinone, identified in drinking water[J]. Angewandte Chemie, 2010, 49(4):790-792
    Pan Y, Zhang X R. Four groups of new aromatic halogenated disinfection byproducts:Effect of bromide concentration on their formation and speciation in chlorinated drinking water[J]. Environmental Science & Technology, 2013, 47(3):1265-1273
    Zhao Y L, Qin F, Boyd J M, et al. Characterization and determination of chloro- and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water[J]. Analytical Chemistry, 2010, 82(11):4599-4605
    Sayess R, Khalil A, Shah M, et al. Comparative cytotoxicity of six iodinated disinfection byproducts on nontransformed epithelial human colon cells[J]. Environmental Science & Technology Letters, 2017, 4(4):143-148
    Plewa M J, Wagner E D, Richardson S D, et al. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts[J]. Environmental Science & Technology, 2004, 38(18):4713-4722
    Plewa M J, Simmons J E, Richardson S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2010, 51(8-9):871-878
    Hu S Y, Gong T T, Xian Q M, et al. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination[J]. Water Research, 2018, 147:254-263
    Hu S Y, Gong T T, Wang J J, et al. Trihalomethane yields from twelve aromatic halogenated disinfection byproducts during chlor(am)ination[J]. Chemosphere, 2019, 228:668-675
    Pan Y, Li W B, An H, et al. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water[J]. Chemosphere, 2016, 144:2312-2320
    Wang W, Qian Y C, Jmaiff L K, et al. Precursors of halobenzoquinones and their removal during drinking water treatment processes[J]. Environmental Science & Technology, 2015, 49(16):9898-9904
    Zhao Y L, Anichina J, Lu X F, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection[J]. Water Research, 2012, 46(14):4351-4360
    Zhang D, Chu W H, Yu Y, et al. Occurrence and stability of chlorophenylacetonitriles, a new class of nitrogenous aromatic DBPs, in chlorinated and chloraminated drinking waters[J]. Environmental Science & Technology Letters, 2018, 5(6):394-399
    Huang G, Jmaiff L, Jiang P, et al. Formation, identification, and occurrence of new bromo- and mixed halo-tyrosyl dipeptides in chloraminated water[J]. Environmental Science & Technology, 2019, 53(7):3672-3680
    Tian D Y, Moe B, Huang G, et al. Cytotoxicity of halogenated tyrosyl compounds, an emerging class of disinfection byproducts[J]. Chemical Research in Toxicology, 2020, 33(4):1028-1035
    Wang W, Qian Y C, Li J H, et al. Analytical and toxicity characterization of halo-hydroxyl-benzoquinones as stable halobenzoquinone disinfection byproducts in treated water[J]. Analytical Chemistry, 2014, 86(10):4982-4988
    Wang W, Qian Y C, Boyd J M, et al. Halobenzoquinones in swimming pool waters and their formation from personal care products[J]. Environmental Science & Technology, 2013, 47(7):3275-3282
    Zhang Z X, Zhu Q Y, Huang C, et al. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs:Binding interactions between aromatic DBPs and catalase play an important role[J]. Water Research, 2020, 170:115283
    Hung S, Mohan A, Reckhow D A, et al. Assessment of the in vitro toxicity of the disinfection byproduct 2,6-dichloro-1,4-benzoquinone and its transformed derivatives[J]. Chemosphere, 2019, 234:902-908
    Du H Y, Li J H, Moe B, et al. Cytotoxicity and oxidative damage induced by halobenzoquinones to T24 bladder cancer cells[J]. Environmental Science & Technology, 2013, 47(6):2823-2830
    Du H Y, Li J H, Moe B, et al. A real-time cell-electronic sensing method for comparative analysis of toxicity of water contaminants[J]. Anal Methods, 2014, 6(7):2053-2058
    Li J H, Moe B, Vemula S, et al. Emerging disinfection byproducts, halobenzoquinones:Effects of isomeric structure and halogen substitution on cytotoxicity, formation of reactive oxygen species, and genotoxicity[J]. Environmental Science & Technology, 2016, 50(13):6744-6752
    Procházka E, Escher B I, Plewa M J, et al. In vitro cytotoxicity and adaptive stress responses to selected haloacetic acid and halobenzoquinone water disinfection byproducts[J]. Chemical Research in Toxicology, 2015, 28(10):2059-2068
    Attene-Ramos M S, Wagner E D, Plewa M J. Comparative human cell toxicogenomic analysis of monohaloacetic acid drinking water disinfection byproducts[J]. Environmental Science & Technology, 2010, 44(19):7206-7212
    Vlastos D, Antonopoulou M, Konstantinou I. Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells[J]. Science of the Total Environment, 2016, 551-552:649-655
    Chen Y H, Qin L T, Mo L Y, et al. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67[J]. Environmental Pollution, 2019, 250:375-385
    Li X Z, Wang M E, Chen W P, et al. Evaluation of combined toxicity of siduron and cadmium on earthworm (Eisenia fetida) using biomarker response index[J]. Science of the Total Environment, 2019, 646:893-901
    Zhang Z X, Yang M T, Yi J Y, et al. Comprehensive insights into the interactions of two emerging bromophenolic DBPs with human serum albumin by multispectroscopy and molecular docking[J]. ACS Omega, 2019, 4(1):563-572
    Liberatore H K, Plewa M J, Wagner E D, et al. Identification and comparative mammalian cell cytotoxicity of new iodo-phenolic disinfection byproducts in chloraminated oil and gas wastewaters[J]. Environmental Science & Technology Letters, 2017, 4(11):475-480
    Zuo Y T, Hu Y, Lu W W, et al. Toxicity of 2,6-dichloro-1,4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode[J]. Journal of Hazardous Materials, 2017, 321:456-463
    Shehata M, Durner J, Thiessen D, et al. Induction of DNA double-strand breaks by monochlorophenol isomers and ChKM in human gingival fibroblasts[J]. Archives of Toxicology, 2012, 86(9):1423-1429
    Yin D Q, Zhu H K, Hu P, et al. Genotoxic effect of 2,4,6-trichlorophenol on p53 gene in zebrafish liver[J]. Environmental Toxicology and Chemistry, 2009, 28(3):603-608
    Jansson K, Jansson V. Genotoxicity of 2,4,6-trichlorophenol in V79 Chinese hamster cells[J]. Mutation Research/Genetic Toxicology, 1992, 280(3):175-179
    Igbinosa E O, Odjadjare E E, Chigor V N, et al. Toxicological profile of chlorophenols and their derivatives in the environment:The public health perspective[J]. The Scientific World Journal, 2013, 2013:460215
    Cooke M S, Evans M D, Dizdaroglu M, et al. Oxidative DNA damage:Mechanisms, mutation, and disease[J]. FASEB Journal, 2003, 17(10):1195-1214
    Horn H F, Vousden K H. Coping with stress:Multiple ways to activate p53[J]. Oncogene, 2007, 26(9):1306-1316
    Levine A J. p53, the cellular gatekeeper for growth and division[J]. Cell, 1997, 88(3):323-331
    Klaunig J E, Kamendulis L M, Hocevar B A. Oxidative stress and oxidative damage in carcinogenesis[J]. Toxicologic Pathology, 2010, 38(1):96-109
    Storz P. Reactive oxygen species in tumor progression[J]. Frontiers in Bioscience, 2005, 10:1881-1896
    Eruslanov E, Kusmartsev S. Identification of ROS Using Oxidized DCFDA and Flow-cytometry[M]//. Advanced Protocols in Oxidative Stress Ⅱ. Springer, 2010:57-72
    Li J H, Wang W, Moe B, et al. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts[J]. Chemical Research in Toxicology, 2015, 28(3):306-318
    Liu J, Song E Q, Liu L C, et al. Polychlorinated biphenyl quinone metabolites lead to oxidative stress in HepG2 cells and the protective role of dihydrolipoic acid[J]. Toxicology in Vitro, 2012, 26(6):841-848
    Yang H B, Zhao Y Z, Tang Y, et al. Antioxidant defence system is responsible for the toxicological interactions of mixtures:A case study on PFOS and PFOA in Daphnia magna[J]. Science of the Total Environment, 2019, 667:435-443
    Lou J X, Wang W, Zhu L Z. Occurrence, formation, and oxidative stress of emerging disinfection byproducts, halobenzoquinones, in tea[J]. Environmental Science & Technology, 2019, 53(20):11860-11868
    Li J H, Wang W, Zhang H Q, et al. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells[J]. Toxicological Sciences, 2014, 141(2):335-343
    Wang W, Qian Y C, Li J H, et al. Characterization of mechanisms of glutathione conjugation with halobenzoquinones in solution and HepG2 cells[J]. Environmental Science & Technology, 2018, 52(5):2898-2908
    Baigi M G, Brault L, Néguesque A, et al. Apoptosis/necrosis switch in two different cancer cell lines:Influence of benzoquinone- and hydrogen peroxide-induced oxidative stress intensity, and glutathione[J]. Toxicology in Vitro, 2008, 22(6):1547-1554
    Li J H, Moe B, Liu Y M, et al. Halobenzoquinone-induced alteration of gene expression associated with oxidative stress signaling pathways[J]. Environmental Science & Technology, 2018, 52(11):6576-6584
    Kundu B, Richardson S D, Granville C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100:Structure-activity analysis and mutation spectra[J]. Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1-2):335-350
    伍吉云, 万祎, 胡建英. 环境中内分泌干扰物的作用机制[J]. 环境与健康杂志, 2005, 22(6):494-497

    Wu J Y, Wan Y, Hu J Y. The action mechanism of environmental endocrine disruptors[J]. Journal of Environment and Health, 2005, 22(6):494-497(in Chinese)

    Ng H W, Perkins R, Tong W D, et al. Versatility or promiscuity:The estrogen receptors, control of ligand selectivity and an update on subtype selective ligands[J]. International Journal of Environmental Research and Public Health, 2014, 11(9):8709-8742
    Hilscherova K, Jones P D, Gracia T, et al. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR[J]. Toxicological Sciences, 2004, 81(1):78-89
    Zhang X W, Yu R M K, Jones P D, et al. Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line[J]. Environmental Science & Technology, 2005, 39(8):2777-2785
    Ezechiáš M, Svobodová K, Cajthaml T. Hormonal activities of new brominated flame retardants[J]. Chemosphere, 2012, 87(7):820-824
    Hamers T, Kamstra J H, Sonneveld E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J]. Toxicological Sciences, 2006, 92(1):157-173
    Leusch F D L, Neale P A, Hebert A, et al. Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity:Suitability for drinking and environmental waters[J]. Environment International, 2017, 99:120-130
    Deng J, Liu C S, Yu L Q, et al. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction[J]. Toxicology and Applied Pharmacology, 2010, 243(1):87-95
    Olsen C M, Meussen-Elholm E T M, Holme J A, et al. Brominated phenols:Characterization of estrogen-like activity in the human breast cancer cell-line MCF-7[J]. Toxicology Letters, 2002, 129(1-2):55-63
    Holmes B E, Smeester L, Fry R C, et al. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor[J]. Chemosphere, 2017, 187:114-122
    Holmes B E, Smeester L, Fry R C, et al. Disinfection byproducts bind human estrogen receptor-α[J]. Environmental Toxicology and Chemistry, 2019, 38(5):956-964
    Yang X H, Ou W, Xi Y, et al. Emerging polar phenolic disinfection byproducts are high-affinity human transthyretin disruptors:An in vitro and in silico study[J]. Environmental Science & Technology, 2019, 53(12):7019-7028
    Kollitz E M, De Carbonnel L, Stapleton H M, et al. The affinity of brominated phenolic compounds for human and zebrafish thyroid receptor β:Influence of chemical structure[J]. Toxicological Sciences, 2018, 163(1):226-239
    Kudo Y, Yamauchi K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis[J]. Toxicological Sciences, 2005, 84(1):29-37
    Suzuki G, Takigami H, Watanabe M, et al. Identification of brominated and chlorinated phenols as potential thyroid-disrupting compounds in indoor dusts[J]. Environmental Science & Technology, 2008, 42(5):1794-1800
    Lee D, Ahn C, Hong E J, et al. 2,4,6-tribromophenol interferes with the thyroid hormone system by regulating thyroid hormones and the responsible genes in mice[J]. International Journal of Environmental Research and Public Health, 2016, 13(7):697
    Xi Y, Yang X H, Zhang H Y, et al. Binding interactions of halo-benzoic acids, halo-benzenesulfonic acids and halo-phenylboronic acids with human transthyretin[J]. Chemosphere, 2020, 242:125135
    Hassenklöver T, Predehl S, Pilli J, et al. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12)[J]. Aquatic Toxicology, 2006, 76(1):37-45
    Li N, Jiang W W, Ma M, et al. Chlorination by-products of bisphenol A enhanced retinoid X receptor disrupting effects[J]. Journal of Hazardous Materials, 2016, 320:289-295
    Kolšek K, Mavri J, Sollner Dolenc M, et al. Endocrine disruptome-An open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding[J]. Journal of Chemical Information and Modeling, 2014, 54(4):1254-1267
    Chen Q C, Tan H Y, Yu H X, et al. Activation of steroid hormone receptors:Shed light on the in silico evaluation of endocrine disrupting chemicals[J]. Science of the Total Environment, 2018, 631-632:27-39
    Li Y, Jiang J Y, Li W X, et al. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii[J]. Chemosphere, 2020, 252:126611
    Liu J Q, Zhang X R, Li Y. Effect of Boiling on Halogenated DBPs and Their Developmental Toxicity in Real Tap Waters[M]//ACS Symposium Series. Washington DC:American Chemical Society, 2015:45-60
    Pan Y, Zhang X R, Wagner E D, et al. Boiling of simulated tap water:Effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity[J]. Environmental Science & Technology, 2014, 48(1):149-156
    Yang M T, Zhang X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii[J]. Environmental Science & Technology, 2013, 47(19):10868-10876
    Pan Y, Zhang X R, Li Y. Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt[J]. Water Research, 2016, 88:60-68
    Wang C, Yang X, Zheng Q, et al. Halobenzoquinone-induced developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos[J]. Environmental Science & Technology, 2018, 52(18):10590-10598
    Liu J Q, Zhang X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga:Halophenolic DBPs are generally more toxic than haloaliphatic ones[J]. Water Research, 2014, 65:64-72
    Xie Y C, Jiang L J, Qiu J F, et al. A comparative evaluation of the immunotoxicity and immunomodulatory effects on macrophages exposed to aromatic trihalogenated DBPs[J]. Immunopharmacology and Immunotoxicology, 2019, 41(2):319-326
    Bull R J, Reckhow D A, Li X F, et al. Potential carcinogenic hazards of non-regulated disinfection by-products:Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines[J]. Toxicology, 2011, 286(1-3):1-19
    Chen B Y, Zhang T, Bond T, et al. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research:A review of methods and resources[J]. Journal of Hazardous Materials, 2015, 299:260-279
    Tuppurainen K, Lötjönen S, Laatikainen R, et al. About the mutagenicity of chlorine-substituted furanones and halopropenals. A QSAR study using molecular orbital indices[J]. Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 247(1):97-102
    Méndez-Hernández D D, Tarakeshwar P, Gust D, et al. Simple and accurate correlation of experimental redox potentials and DFT-calculated HOMO/LUMO energies of polycyclic aromatic hydrocarbons[J]. Journal of Molecular Modeling, 2013, 19(7):2845-2848
    Chan K T, Jensen N S, Silber P M, et al. Structure-activity relationships for halobenzene induced cytotoxicity in rat and human hepatoctyes[J]. Chemico-Biological Interactions, 2007, 165(3):165-174
  • 加载中
计量
  • 文章访问数:  3782
  • HTML全文浏览数:  3782
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-24
魏文哲, 罗家怡, 赵佳焱, 楚文海, 董慧峪, 周庆, 施鹏, 潘旸. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
引用本文: 魏文哲, 罗家怡, 赵佳焱, 楚文海, 董慧峪, 周庆, 施鹏, 潘旸. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
Wei Wenzhe, Luo Jiayi, Zhao Jiayan, Chu Wenhai, Dong Huiyu, Zhou Qing, Shi Peng, Pan Yang. Research Progress on Toxicity of New Cyclic Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002
Citation: Wei Wenzhe, Luo Jiayi, Zhao Jiayan, Chu Wenhai, Dong Huiyu, Zhou Qing, Shi Peng, Pan Yang. Research Progress on Toxicity of New Cyclic Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2021, 16(6): 87-103. doi: 10.7524/AJE.1673-5897.20201224002

饮用水中新型环状消毒副产物的毒性研究进展

    通讯作者: 潘旸, E-mail: panyang@nju.edu.cn
    作者简介: 魏文哲(1998-),男,硕士研究生,研究方向为环境毒理学,E-mail:weiwenzhe1998@163.com
  • 1. 污染控制与资源化国家重点实验室, 南京大学环境学院, 南京 210023;
  • 2. 污染控制与资源化国家重点实验室, 同济大学环境科学与工程学院, 上海 200092;
  • 3. 中国科学院饮用水科学与技术重点实验室, 中国科学院生态环境研究中心, 北京 100085
基金项目:

国家自然科学基金面上项目(51778280,52070093);江苏省优秀青年基金资助项目(BK20180058)

摘要: 饮用水中新型环状消毒副产物(disinfection byproducts,DBPs)因具有较高的生物毒性,受到越来越广泛的关注。本文简要概述了国内外饮用水中新型环状DBPs检测情况及暴露水平,重点探讨了新型环状DBPs的细胞毒性、遗传毒性和内分泌干扰效应,并总结了定量构效关系(quantitative structure-activity relationship,QSAR)在毒性效应预测方面的应用,旨在为新型环状DBPs的毒性及致毒机理研究提供理论参考。

English Abstract

参考文献 (101)

返回顶部

目录

/

返回文章
返回