环境污染物造成鱼类视觉缺陷的研究进展

魏书慧, 张晓娜, 汝少国. 环境污染物造成鱼类视觉缺陷的研究进展[J]. 生态毒理学报, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
引用本文: 魏书慧, 张晓娜, 汝少国. 环境污染物造成鱼类视觉缺陷的研究进展[J]. 生态毒理学报, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
Wei Shuhui, Zhang Xiaona, Ru Shaoguo. Advances in Visual Impairment Caused by Environmental Pollutants in Fish[J]. Asian journal of ecotoxicology, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
Citation: Wei Shuhui, Zhang Xiaona, Ru Shaoguo. Advances in Visual Impairment Caused by Environmental Pollutants in Fish[J]. Asian journal of ecotoxicology, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001

环境污染物造成鱼类视觉缺陷的研究进展

    作者简介: 魏书慧(1996-),女,硕士研究生,研究方向为生态毒理学,E-mail:weishuhui@stu.ouc.edu.cn
    通讯作者: 张晓娜, E-mail: zxn_xiaona@ouc.edu.cn
  • 基金项目:

    国家重点研发计划(2017YFC1600705)

  • 中图分类号: X171.5

Advances in Visual Impairment Caused by Environmental Pollutants in Fish

    Corresponding author: Zhang Xiaona, zxn_xiaona@ouc.edu.cn
  • Fund Project:
  • 摘要: 多溴联苯醚、重金属、双酚类化合物和农药等环境污染物在多种环境介质中广泛被检出,众多研究表明视觉缺陷的发生也与环境污染物的广泛存在密切相关。视觉系统的正常发育和视觉功能的形成对鱼类摄食、集群和繁殖等生命活动具有重要作用,而视觉缺陷将会影响其生存和种群稳定,因此环境污染物所产生的视觉缺陷备受研究者关注。本文以鱼类的眼睛发育、视觉转导和视觉行为等方面为指标,对几类常见的环境污染物(多环芳烃、多氯联苯、多溴联苯醚、重金属、双酚类化合物及其衍生物和农药等)所造成的视觉毒性效应及机制研究做了综合阐述,期望为今后进一步探究环境污染物的视觉毒性作用及其安全性评价提供更多理论参考。
  • 加载中
  • Cordier S, Chevrier C, Robert-Gnansia E,et al.Risk of congenital anomalies in the vicinity of municipal solid waste incinerators[J].Occupational and Environmental Medicine, 2004, 61(1):8-15
    Dolk H, Vrijheid M. The impact of environmental pollution on congenital anomalies[J].British Medical Bulletin, 2003, 68(1):25-45
    Huang L X, Wang C G, Zhang Y Y,et al.Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved[J].Journal of Hazardous Materials, 2013, 261:172-180
    Morales-Suárez Varela M M, Nohr E A, Llopis-González A,et al.Socio-occupational status and congenital anomalies[J].European Journal of Public Health, 2009, 19(2):161-167
    Jiménez Barbosa I A, Boon M Y, Khuu S K. Exposure to organic solvents used in dry cleaning reduces low and high level visual function[J].PLoS One, 2015, 10(5):e0121422
    Till C, Westall C A, Koren G,et al.Vision abnormalities in young children exposed prenatally to organic solvents[J].NeuroToxicology, 2005, 26(4):599-613
    Hubbs C, Blaxter J H S. Ninth larval fish conference:Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance[J].Transactions of the American Fisheries Society, 1986, 115(1):98-114
    龚静,彭新亮,黄光玲,等.鲫鱼和斑马鱼视网膜结构的比较组织学研究[J].经济动物学报,2012, 16(3):151-153

    Gong J, Peng X L, Huang G L,et al.Histological comparison of retina between Carassius auratus and Brachydanio rerio[J].Journal of Economic Animal, 2012, 16(3):151-153(in Chinese)

    Burrill J D, Easter S S. Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio)[J].The Journal of Comparative Neurology, 1994, 346(4):583-600
    Raymond P A, Barthel L K, Curran G A. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish[J].The Journal of Comparative Neurology, 1995, 359(4):537-550
    Schmitt E A, Dowling J E. Early retinal development in the zebrafish, Danio rerio:Light and electron microscopic analyses[J].The Journal of Comparative Neurology, 1999, 404(4):515-536
    Fadool J M, Dowling J E. Zebrafish:A model system for the study of eye genetics[J].Progress in Retinal and Eye Research, 2008, 27(1):89-110
    Easter J, Nicola G N. The development of vision in the zebrafish (Danio rerio)[J].Developmental Biology, 1996, 180(2):646-663
    Vihtelic T S, Doro C J, Hyde D R. Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins[J].Visual Neuroscience, 1999, 16(3):571-585
    Brockerhoff S E. Measuring the optokinetic response of zebrafish larvae[J].Nature Protocols, 2006, 1(5):2448-2451
    邹苏琪,殷梧,杨昱鹏,等.斑马鱼行为学实验在神经科学中的应用[J].生物化学与生物物理进展,2009, 36(1):5-12

    Zou S Q, Yin W, Yang Y P,et al.The ethology application of zebrafish in neuroscience[J].Progress in Biochemistry and Biophysics, 2009, 36(1):5-12(in Chinese)

    Brockerhoff S E, Hurley J B, Janssen-Bienhold U,et al.A behavioral screen for isolating zebrafish mutants with visual system defects[J].PNAS, 1995, 92(23):10545-10549
    Richards F M, Alderton W K, Kimber G M,et al.Validation of the use of zebrafish larvae in visual safety assessment[J].Journal of Pharmacological and Toxicological Methods, 2008, 58(1):50-58
    Link B A, Collery R F. Zebrafish models of retinal disease[J].Annual Review of Vision Science, 2015, 1:125-153
    Wise S A. Large (C ≥ 24) polycyclic aromatic hydrocarbons:Chemistry and analysis[J].Polycyclic Aromatic Compounds, 2003, 23(1):109-111
    Tang G W, Liu M Y, Zhou Q,et al.Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas:Implications for anthropogenic impacts[J].Science of the Total Environment, 2018, 634:811-820
    田蕴,郑天凌,王新红.厦门西港表层沉积物中多环芳烃(PAHs)的含量、分布及来源[J].海洋与湖沼,2004, 35(1):15-20

    Tian Y, Zheng T L, Wang X H. Concentration, distribution and source of polycyclic aromatic hydrocarbons in surface sediments of Xiamen western harbor[J].Oceanologia et Limnologia Sinica, 2004, 35(1):15-20(in Chinese)

    Carls M G, Rice S D, Hose J E. Sensitivity of fish embryos to weathered crude oil:Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi)[J].Environmental Toxicology and Chemistry, 1999, 18(3):481-493
    Incardona J P, Carls M G, Teraoka H,et al.Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development[J].Environmental Health Perspectives, 2005, 113(12):1755-1762
    Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J].Toxicology and Applied Pharmacology, 2004, 196(2):191-205
    Kawaguchi M, Sugahara Y, Watanabe T,et al.Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil[J].Environmental Science and Pollution Research, 2012, 19(7):2488-2497
    Incardona J P, Gardner L D, Linbo T L,et al.PNAS plus:From the cover:Deepwater horizon crude oil impacts the developing hearts of large predatory pelagic fish[J].PNAS, 2014, 111(15):E1510-E1518
    Liu Y, Bai J, Yao H J,et al.Embryotoxicity assessment and efficient removal of naphthalene from water by irradiated graphene aerogels[J].Ecotoxicology and Environmental Safety, 2020, 189:110051
    Xu E G, Magnuson J T, Diamante G,et al.Changes in microRNA-mRNA signatures agree with morphological, physiological, and behavioral changes in larval mahi-mahi treated with deepwater horizon oil[J].Environmental Science & Technology, 2018, 52(22):13501-13510
    Xu E G, Mager E M, Grosell M,et al.Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae[J].Environmental Science & Technology, 2016, 50(14):7842-7851
    Huang L X, Zuo Z H, Zhang Y Y,et al.Use of toxicogenomics to predict the potential toxic effect of benzo(a)pyrene on zebrafish embryos:Ocular developmental toxicity[J].Chemosphere, 2014, 108:55-61
    Chen K, Tsutsumi Y, Yoshitake S,et al.Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos[J].Aquatic Toxicology, 2017, 182:194-204
    Breivik K, Gioia R, Chakraborty P,et al.Are reductions in industrial organic contaminants emissions in rich countries achieved partly by export of toxic wastes?[J].Environmental Science & Technology, 2011, 45(21):9154-9160
    Sepúlveda A, Schluep M, Renaud F G,et al.A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling:Examples from China and India[J].Environmental Impact Assessment Review, 2010, 30(1):28-41
    Lau M H Y, Leung K M Y, Wong S W Y,et al.Environmental policy, legislation and management of persistent organic pollutants (POPs) in China[J].Environmental Pollution, 2012, 165:182-192
    Gioia R, Eckhardt S, Breivik K,et al.Evidence for major emissions of PCBs in the west African region[J].Environmental Science & Technology, 2011, 45(4):1349-1355
    Zheng G J, Leung A O W, Jiao L P,et al.Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China:Sources, environmental levels and potential human health impacts[J].Environment International, 2008, 34(7):1050-1061
    Ye H, Zhou C H, Zeng X X. Investigation of pollution characteristics of polychlorinated biphenyls in the typical drinking water sources in Jiangsu Province, China[J].Environmental Monitoring and Assessment, 2008, 158(1-4):573-579
    Kim Y, Cooper K R. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) in the embryos and newly hatched larvae of the Japanese medaka (Oryzias latipes)[J].Chemosphere, 1999, 39(3):527-538
    Kuriyama S N, Chahoud I. In utero exposure to low-dose 2,3',4,4',5-pentachlorobiphenyl (PCB 118) impairs male fertility and alters neurobehavior in rat offspring[J].Toxicology, 2004, 202(3):185-197
    Pan X Q, Inouye K, Ito T,et al.Evaluation of relative potencies of PCB126 and PCB169 for the immunotoxicities in ovalbumin (OVA)-immunized mice[J].Toxicology, 2004, 204(1):51-60
    Ranasinghe P, Thorn R J, Seto R,et al.Embryonic exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish[J].Environmental Toxicology and Chemistry, 2020, 39(1):162-170
    Zhang X, Hong Q, Yang L,et al.PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae[J].Ecotoxicology and Environmental Safety, 2015, 118:133-138
    Cohen M, Kicheva A, Ribeiro A,et al.Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms[J].Nature Communications, 2015, 6:6709
    Stacher Hörndli C, Chien C B. Sonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk[J].Development, 2012, 139(14):2604-2613
    Shkumatava A, Neumann C J. Shh directs cell-cycle exit by activating p57Kip2 in the zebrafish retina[J].EMBO Reports, 2005, 6(6):563-569
    Shkumatava A, Fischer S, Müller F,et al.Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina[J].Development, 2004, 131(16):3849-3858
    Sasagawa S, Takabatake T, Takabatake Y,et al.Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA[J].Genesis, 2002, 33(2):86-96
    Wei N, Zhang X, Hong Q,et al.The sonic hedgehog signaling pathway is suppressed following PCB1254 exposure during retinal development[J].Environmental Toxicology, 2019, 34(3):340-347
    张晓倩,张昕,李楠,等. miR-182在多氯联苯(PCB1254)暴露后视网膜神经节细胞内的表达及意义[J].南京医科大学学报:自然科学版, 2017, 37(1):35-39

    Zhang X Q, Zhang X, Li N,et al.Expression and effects of miR-182 in retinal ganglion cells exposed to PCB1254[J].Journal of Nanjing Medical University:Natural Sciences, 2017, 37(1):35-39(in Chinese)

    Wu J P, Luo X J, Zhang Y,et al.Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China[J].Environment International, 2008, 34(8):1109-1113
    Peng X Z, Tang C M, Yu Y Y,et al.Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China[J].Environment International, 2009, 35(2):303-309
    Yang J, Zhao H, Chan K M. Toxic effects of polybrominated diphenyl ethers (BDE 47 and 99) and localization of BDE-99-induced cyp1a mRNA in zebrafish larvae[J].Toxicology Reports, 2017, 4:614-624
    Lilienthal H, Hack A, Roth-Härer A,et al.Effects of developmental exposure to 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats[J].Environmental Health Perspectives, 2006, 114(2):194-201
    Wu Y, Zheng T L, Wang J Y,et al.Neurobehavioral derangement in medaka fish receiving polybrominated diphenyl ethers (PBDE-47) during the early-stage development[J].Journal of Hygiene Research, 2013, 42(6):932-936
    Zhao J, Xu T, Yin D Q. Locomotor activity changes on zebrafish larvae with different 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes[J].Chemosphere, 2014, 94:53-61
    Dong W, MacAulay L J, Kwok K W,et al.The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos[J].Endocrine Disruptors, 2014, 2(1):e969072
    Xu T, Zhao J, Yin D Q,et al.High-throughput RNA sequencing reveals the effects of 2,2',4,4'-tetrabromodiphenyl ether on retina and bone development of zebrafish larvae[J].BMC Genomics, 2015, 16:23
    Chen L G, Huang Y B, Huang C J,et al.Acute exposure to DE-71 causes alterations in visual behavior in zebrafish larvae[J].Environmental Toxicology and Chemistry, 2013, 32(6):1370-1375
    Zezza D, Tait S, Della Salda L,et al.Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE-47, PBDE-99 and PBDE-209 on zebrafish embryos[J].Ecotoxicology and Environmental Safety, 2019, 183:109566
    Cvekl A, Wang W L. Retinoic acid signaling in mammalian eye development[J].Experimental Eye Research, 2009, 89(3):280-291
    Duester G. Keeping an eye on retinoic acid signaling during eye development[J].Chemico Biological Interactions, 2009, 178(1-3):178-181
    Hyatt G A, Dowling J E. Retinoic acid. A key molecule for eye and photoreceptor development[J].Investigative Ophthalmology and Visual Science, 1997, 38(8):1471-1475
    Marsh-Armstrong N, McCaffery P, Gilbert W,et al.Retinoic acid is necessary for development of the ventral retina in zebrafish[J].PNAS, 1994, 91(15):7286-7290
    Hyatt G A, Schmitt E A, Fadool J M,et al.Retinoic acid alters photoreceptor development in vivo[J].PNAS, 1996, 93(23):13298-13303
    Kam R K T, Deng Y, Chen Y L,et al.Retinoic acid synthesis and functions in early embryonic development[J].Cell & Bioscience, 2012, 2(1):11
    Golczak M, Maeda A, Bereta G,et al.Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina[J].Journal of Biological Chemistry, 2008, 283(15):9543-9554
    Xu T, Chen L G, Hu C Y,et al.Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae[J].Environmental Toxicology and Pharmacology, 2013, 35(1):13-20
    王超.CYP3A65介导的生物转化在BDE47所致斑马鱼发育异常中的作用及其分子机制[D]. 南京:南京医科大学, 2018:91 Wang C. Study on the role and mechanisms of the biotransformation of CYP3A65 in BDE47

    -induced the developmental abnormalities in zebrafish[D]. Nanjing:Nanjing Medical University, 2018:91(in Chinese)

    Bertrand S, Thisse B, Tavares R,et al.Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression[J].PLoS Genetics, 2007, 3(11):e188
    Kelley M W, Turner J K, Reh T A. Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina[J].Development, 1995, 121(11):3777-3785
    Ng L, Lyubarsky A, Nikonov S S,et al.Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors[J].The Journal of Neuroscience, 2010, 30(9):3347-3357
    Mackin R D, Frey R A, Gutierrez C,et al.Endocrine regulation of multichromatic color vision[J].PNAS, 2019, 116(34):16882-16891
    李嘉伟,尹晓宇,周旖妮,等.五溴联苯醚(BDE-99)和羟基五溴联苯醚(5-OH-BDE-99)经由THRβ影响斑马鱼胚胎眼部色素的沉着[J].生态毒理学报, 2020, 15(5):181-188

    Li J W, Yin X Y, Zhou Y N,et al.BDE-99 and 5-OH-BDE-99 affect the pigmentation of the eyes of zebrafish embryos via THRβ[J].Asian Journal of Ecotoxicology, 2020, 15(5):181-188(in Chinese)

    王益平. 珠江流域广东段河水水质和重金属污染特征研究[D]. 广州:华南理工大学, 2012:38 Wang Y P. Characteristics of water quality and heavy metals in Guangdong section of the Pearl River basin[D]. Guangzhou:South China University of Technology, 2012:38(in Chinese)
    Prabakaran M, Binuramesh C, Steinhagen D,et al.Immune response in the tilapia, Oreochromis mossambicus on exposure to tannery effluent[J].Ecotoxicology and Environmental Safety, 2007, 68(3):372-378
    Chyb J, Mikolajczyk T, Szczerbik P,et al.The influence of zinc on sperm motility of common carp:A computer assisted studies[J].Archives of Polish Fisheries, 2000, 8(1):4-14
    Guével R L, Petit F G, Goff P L,et al.Inhibition of rainbow trout (Oncorhynchus mykiss) estrogen receptor activity by cadmium[J].Biology of Reproduction, 2000, 63(1):259-266
    Rice C, Ghorai J K, Zalewski K,et al.Developmental lead exposure causes startle response deficits in zebrafish[J].Aquatic Toxicology, 2011, 105(3-4):600-608
    Hen Chow E S, Yu Hui M N, Cheng C W,et al.Cadmium affects retinogenesis during zebrafish embryonic development[J].Toxicology and Applied Pharmacology, 2009, 235(1):68-76
    Avallone B, Crispino R, Cerciello R,et al.Cadmium effects on the retina of adult Danio rerio[J].Comptes Rendus Biologies, 2015, 338(1):40-47
    曾建平.铅诱导的视网膜色素上皮氧化应激应答机制及其细胞生物学特征[D]. 南昌:南昌大学, 2014:24-34 Zeng J P. The mechanism and the biological characteristics of lead-induced oxidative stress response in retinal pigment epithelium[D]. Nanchang:Nanchang University, 2014:24

    -34(in Chinese)

    Pereira P, Raimundo J, Araújo O,et al.Fish eyes and brain as primary targets for mercury accumulation:A new insight on environmental risk assessment[J].The Science of the Total Environment, 2014, 494-495:290-298
    Pereira R, Guilherme S, Brandão F,et al.Insights into neurosensory toxicity of mercury in fish eyes stemming from tissue burdens, oxidative stress and synaptic transmission profiles[J].Marine Environmental Research, 2016, 113:70-79
    Luo R, An M, Arduini B L,et al.Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development[J].Developmental Dynamics, 2001, 220(2):169-174
    Zhang T, Zhou X Y, Ma X F,et al.Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos[J].Aquatic Toxicology, 2015, 167:68-76
    邱月, 李根容, 龙梅, 等. 超高效合相色谱法同时检测塑料食品接触材料中11种双酚类化合物[J].分析化学, 2020, 48(2):255-261

    Qiu Y, Li G R, Long M,et al.Determination of 11 kinds of bisphenols in plastic food contact materials by ultra-performance convergence chromatography[J].Chinese Journal of Analytical Chemistry, 2020, 48(2):255-261(in Chinese)

    曹晨,李文斌,宋青,等.采用固相萃取/高效液相色谱法测定保健食品中12种双酚类化合物的迁移量[J].首都公共卫生, 2017, 11(6):267-271

    Cao C, Li W B, Song Q,et al.Determination of migration of 12 bisphenol compounds in function food by solid phase extraction and high performance liquid chromatography[J].Capital Journal of Public Health, 2017, 11(6):267-271(in Chinese)

    Huang Y Q, Wong C K C, Zheng J S,et al.Bisphenol A (BPA) in China:A review of sources, environmental levels, and potential human health impacts[J].Environment International, 2012, 42:91-99
    Yang Y J, Yang Y, Zhang J,et al.Assessment of bisphenol A alternatives in paper products from the Chinese market and their dermal exposure in the general population[J].Environmental Pollution, 2019, 244:238-246
    Song S J, Ruan T, Wang T,et al.Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China[J].Environmental Science & Technology, 2012, 46(24):13136-13143
    Si W, Cai Y F, Liu J C,et al.Investigating the role of colloids on the distribution of bisphenol analogues in surface water from an ecological demonstration area, China[J].Science of the Total Environment, 2019, 673:699-707
    Yamazaki E, Yamashita N, Taniyasu S,et al.Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J].Ecotoxicology and Environmental Safety, 2015, 122:565-572
    Zhao X, Qiu W H, Zheng Y,et al.Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J].Ecotoxicology and Environmental Safety, 2019, 180:43-52
    Li D, Zhou Z, Qing D,et al.Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction[J].Human Reproduction, 2010, 25(2):519-527
    裘文慧.双酚A及其替代物双酚S对鱼类免疫和神经内分泌系统的毒性效应与作用机理[D]. 上海:上海大学, 2016:5 Qiu W H. The effects and action mechanisms of bisphenol A and bisphenol S on the immune system and reproductive neuroendocrine system in fish[D]. Shanghai:Shanghai University, 2016:5(in Chinese)
    Inagaki T, Smith N, Lee E K,et al.Low dose exposure to bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese medaka[J].NeuroToxicology, 2016, 52:188-197
    Fraser T W K, Khezri A, Lewandowska-Sabat A M,et al.Endocrine disruptors affect larval zebrafish behavior:Testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers[J].Aquatic Toxicology, 2017, 193:128-135
    Liu W M, Zhang X N, Wei P H,et al.Long-term exposure to bisphenol S damages the visual system and reduces the tracking capability of male zebrafish (Danio rerio)[J].Journal of Applied Toxicology, 2018, 38(2):248-258
    Yoshizawa K, Nambu H, Yang J,et al.Mechanisms of photoreceptor cell apoptosis induced by N-methyl-N-nitrosourea in Sprague-Dawley rats[J].Laboratory Investigation, A Journal of Technical Methods and Pathology, 1999, 79(11):1359-1367
    Gu J, Zhang J Y, Chen Y Y,et al.Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio)[J].Chemosphere, 2019, 217:629-635
    Baumann L, Ros A, Rehberger K,et al.Thyroid disruption in zebrafish (Danio rerio) larvae:Different molecular response patterns lead to impaired eye development and visual functions[J].Aquatic Toxicology, 2016, 172:44-55
    Baumann L, Segner H, Ros A,et al.Thyroid hormone disruptors interfere with molecular pathways of eye development and function in zebrafish[J].International Journal of Molecular Sciences, 2019, 20(7):1543
    Buck R C, Franklin J, Berger U,et al.Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins[J].Integrated Environmental Assessment and Management, 2011, 7(4):513-541
    刘艳青,宋词,王军.PFOS对BV-2细胞的炎性损伤及机制研究[J].南京医科大学学报:自然科学版, 2017, 37(6):681-685

    Liu Y Q, Song C, Wang J. Inflammatory damage of BV-2 cells induced by PFOS and its mechanism[J].Acta Universitatis Medicinalis Nanjing:Natural Science, 2017, 37(6):681-685(in Chinese)

    Paul A G, Jones K C, Sweetman A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate[J].Environmental Science & Technology, 2009, 43(2):386-392
    Boulanger B, Vargo J, Schnoor J L,et al.Detection of perfluorooctane surfactants in Great Lakes water[J].Environmental Science & Technology, 2004, 38(15):4064-4070
    Hansen K J, Johnson H O, Eldridge J S,et al.Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River[J].Environmental Science & Technology, 2002, 36(8):1681-1685
    Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters (9 pp)[J].Environmental Science and Pollution Research, 2006, 13(5):299-307
    崔燕,白承连,徐涛,等.PFOA对斑马鱼胚胎发育、行为和DNA损伤的毒性研究[J].生态毒理学报, 2012, 7(3):241-250

    (in English) Cui Y, Bai C L, Xu T,et al.PFOA-induced developmental toxicity, behavior change and DNA damage in zebrafish embryos[J].Asian Journal of Ecotoxicology, 2012, 7(3):241-250

    Huang H H, Huang C J, Wang L J,et al.Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS)[J].Aquatic Toxicology, 2010, 98(2):139-147
    Renner R. The long and the short of perfluorinated replacements[J].Environmental Science & Technology, 2006, 40(1):12-13
    Shi Y L, Vestergren R, Nost T H,et al.Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in crucian carp[J].Environmental Science & Technology, 2018, 52(8):4592-4600
    Chen L G, Tsui M M P, Shi Q P,et al.Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure[J].Aquatic Toxicology, 2018, 201:1-10
    Hu C Y, Tang L Z, Liu M Y,et al.Probiotic modulation of perfluorobutanesulfonate toxicity in zebrafish:Disturbances in retinoid metabolism and visual physiology[J].Chemosphere, 2020, 258:127409
    Christensen K, Harper B, Luukinen B,et al.Chlorpyrifos technical fact sheet[R]. Corvallis:National Pesticide Information Center, Oregon State University Extension Services, 2009
    Racke K D. Environmental fate of chlorpyrifos[J].Reviews of Environmental Contamination and Toxicology, 1993, 131:1-150
    Sloman K A, McNeil P L. Using physiology and behaviour to understand the responses of fish early life stages to toxicants[J].Journal of Fish Biology, 2012, 81(7):2175-2198
    Williams W M, Giddings J M, Purdy J,et al.Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States[J].Reviews of Environmental Contamination and Toxicology, 2014, 231:77-117
    Ismail B S, Siti H H, Talib L. Pesticide residue levels in the surface water of the irrigation canals in the Muda Irrigation Scheme Kedah, Malaysia[J].International Journal of Basic and Applied Sciences, 2012, 12(6):85-90
    Alamgir Zaman Chowdhury M, Fakhruddin A N M, Nazrul Islam M,et al.Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography-mass spectrometry[J].Food Control, 2013, 34(2):457-465
    Karyab H, Mahvi A H, Nazmara S,et al.Determination of water sources contamination to diazinon and malathion and spatial pollution patterns in Qazvin, Iran[J].Bulletin of Environmental Contamination and Toxicology, 2013, 90(1):126-131
    Qiu X C, Nomichi S, Chen K,et al.Short-term and persistent impacts on behaviors related to locomotion, anxiety, and startle responses of Japanese medaka (Oryzias latipes) induced by acute, sublethal exposure to chlorpyrifos[J].Aquatic Toxicology, 2017, 192:148-154
    Marigoudar S R, Mohan D, Nagarjuna A,et al.Biomarker and histopathological responses of Lates calcarifer on exposure to sub lethal concentrations of chlorpyrifos[J].Ecotoxicology and Environmental Safety, 2018, 148:327-335
    Marigoudar S R, Nagarjuna A, Karthikeyan P,et al.Comparative toxicity of chlorpyrifos:Sublethal effects on enzyme activities and histopathology of Mugil cephalus and Chanos chanos[J].Chemosphere, 2018, 211:89-101
    Ortiz-Delgado J B, Funes V, Sarasquete C. The organophosphate pesticide -OP- malathion inducing thyroidal disruptions and failures in the metamorphosis of the Senegalese sole, Solea senegalensis[J].BMC Veterinary Research, 2019, 15(1):1-21
    Pitchika G K, Swamy K V, Ranjani T S,et al.Effect of cypermethrin on reproductive efficacy in zebrafish (Danio rerio):In-vivo and in-silico studies[J].Journal of Environmental Biology, 2019, 40(5):985-994
    Sushma N, Devasena T. Aqueous extract of Trigonella foenum graecum (Fenugreek) prevents cypermethrin-induced hepatotoxicity and nephrotoxicity[J].Human & Experimental Toxicology, 2010, 29(4):311-319
    Grewal K K, Sandhu G S, Kaur R,et al.Toxic impacts of cypermethrin on behavior and histology of certain tissues of albino rats[J].Toxicology International, 2010, 17(2):94-98
    Ranjani T S, Pitchika G K, Yedukondalu K,et al.Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure[J].Chemosphere, 2020, 249:126148
    Tareke E, Rydberg P, Karlsson P,et al.Analysis of acrylamide, a carcinogen formed in heated foodstuffs[J].Journal of Agricultural and Food Chemistry, 2002, 50(17):4998-5006
    Smith C J, Perfetti T A, Rumple M A,et al."IARC Group 2A Carcinogens" reported in cigarette mainstream smoke[J].Food and Chemical Toxicology, 2000, 38(4):371-383
    Albalawi A, Alhasani R H A, Biswas L,et al.Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos[J].Experimental Eye Research, 2018, 175:103-114
    Kim J, Kim C Y, Oh H,et al.Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development[J].Science of the Total Environment, 2019, 653:36-44
    Barceló D, Petrovic M. Pharmaceuticals and personal care products (PPCPs) in the environment[J].Analytical and Bioanalytical Chemistry, 2007, 387(4):1141-1142
    King O C, van de Merwe J P, McDonald J A,et al.Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents:Is the progestin also cause for concern?[J].Environmental Toxicology and Chemistry, 2016, 35(6):1378-1385
    Kolodziej E P, Gray J L, Sedlak D L. Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent[J].Environmental Toxicology and Chemistry, 2003, 22(11):2622-2629
    Bridges K N, Magnuson J T, Curran T E,et al.Alterations to the vision-associated transcriptome of zebrafish (Danio rerio) following developmental norethindrone exposure[J].Environmental Toxicology and Pharmacology, 2019, 69:137-142
    van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J].Chemosphere, 2012, 88(10):1119-1153
    Gao J M, Wu L, Chen Y P,et al.Spatiotemporal distribution and risk assessment of organotins in the surface water of the Three Gorges Reservoir Region, China[J].Chemosphere, 2017, 171:405-414
    Xiao Y, Jiang J Q, Hu W X,et al.Toxicity of triphenyltin on the development of retinal axons in zebrafish at low dose[J].Aquatic Toxicology, 2017, 189:9-15
    Chen Y, Vymazal J, Březinová T,et al.Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands[J].Science of the Total Environment, 2016, 566-567:1660-1669
    Li J N, Cheng W X, Xu L K,et al.Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system[J].Environmental Science and Pollution Research, 2015,22(6):4587-4596
    Moldovan Z. Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania[J].Chemosphere, 2006, 64(11):1808-1817
    Chen J B, Gao H W, Zhang Y L,et al.Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio)[J].Scientific Reports, 2014, 4:4841
    Wang F, Wang R L, Liu F,et al.Gene expression profiles in brain of male juvenile zebrafish (Danio rerio) treated with triclosan[J].Toxicology and Applied Pharmacology, 2019, 362:35-42
    Nassef M, Kim S G, Seki M,et al.In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes)[J].Chemosphere, 2010, 79(9):966-973
    康桂英,董武,杨景峰,等. 对乙酰氨基酚对斑马鱼胚胎甲状腺激素相关基因表达的影响[J].中国药理学与毒理学杂志, 2019, 33(4):288-294

    Kang G Y, Dong W, Yang J F,et al.Effect of acetaminophen on thyroxine relative genes of zebrafish embryos[J].Chinese Journal of Pharmacology and Toxicology, 2019, 33(4):288-294(in Chinese)

    张灵,刘秘,王雯雯,等. 三氯生单独暴露对斑马鱼幼鱼眼部的毒性研究[J].生命科学研究, 2019, 23(4):290-296

    Zhang L, Liu M, Wang W W,et al.Toxic effect of triclosan exposure on the eyes of zebrafish larvae[J].Life Science Research, 2019, 23(4):290-296(in Chinese)

    Li D, Yang M, Hu J Y,et al.Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J].Environmental Toxicology and Chemistry, 2008, 27(1):80-86
    Rodrigues S, Antunes S C, Correia A T,et al.Oxytetracycline effects in specific biochemical pathways of detoxification, neurotransmission and energy production in Oncorhynchus mykiss[J].Ecotoxicology and Environmental Safety, 2018, 164:100-108
    Deeti S, O'Farrell S, Kennedy B N. Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response[J].Journal of Pharmacological and Toxicological Methods, 2014, 69(1):1-8
    Josefsson S, Leonardsson K, Gunnarsson J S,et al.Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments[J].Environmental Science & Technology, 2010, 44(19):7456-7464
    Josefsson S, Leonardsson K, Gunnarsson J S,et al.Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.)[J].Chemosphere, 2011, 85(9):1444-1451
  • 加载中
计量
  • 文章访问数:  2425
  • HTML全文浏览数:  2425
  • PDF下载数:  74
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-27
魏书慧, 张晓娜, 汝少国. 环境污染物造成鱼类视觉缺陷的研究进展[J]. 生态毒理学报, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
引用本文: 魏书慧, 张晓娜, 汝少国. 环境污染物造成鱼类视觉缺陷的研究进展[J]. 生态毒理学报, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
Wei Shuhui, Zhang Xiaona, Ru Shaoguo. Advances in Visual Impairment Caused by Environmental Pollutants in Fish[J]. Asian journal of ecotoxicology, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001
Citation: Wei Shuhui, Zhang Xiaona, Ru Shaoguo. Advances in Visual Impairment Caused by Environmental Pollutants in Fish[J]. Asian journal of ecotoxicology, 2021, 16(6): 104-119. doi: 10.7524/AJE.1673-5897.20210227001

环境污染物造成鱼类视觉缺陷的研究进展

    通讯作者: 张晓娜, E-mail: zxn_xiaona@ouc.edu.cn
    作者简介: 魏书慧(1996-),女,硕士研究生,研究方向为生态毒理学,E-mail:weishuhui@stu.ouc.edu.cn
  • 中国海洋大学海洋生命学院, 青岛 266003
基金项目:

国家重点研发计划(2017YFC1600705)

摘要: 多溴联苯醚、重金属、双酚类化合物和农药等环境污染物在多种环境介质中广泛被检出,众多研究表明视觉缺陷的发生也与环境污染物的广泛存在密切相关。视觉系统的正常发育和视觉功能的形成对鱼类摄食、集群和繁殖等生命活动具有重要作用,而视觉缺陷将会影响其生存和种群稳定,因此环境污染物所产生的视觉缺陷备受研究者关注。本文以鱼类的眼睛发育、视觉转导和视觉行为等方面为指标,对几类常见的环境污染物(多环芳烃、多氯联苯、多溴联苯醚、重金属、双酚类化合物及其衍生物和农药等)所造成的视觉毒性效应及机制研究做了综合阐述,期望为今后进一步探究环境污染物的视觉毒性作用及其安全性评价提供更多理论参考。

English Abstract

参考文献 (154)

返回顶部

目录

/

返回文章
返回