土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应

马娇阳, 保欣晨, 王坤, 王成尘, 崔道雷, 张梦妍, 向萍. 土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应[J]. 生态毒理学报, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
引用本文: 马娇阳, 保欣晨, 王坤, 王成尘, 崔道雷, 张梦妍, 向萍. 土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应[J]. 生态毒理学报, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
Ma Jiaoyang, Bao Xinchen, Wang Kun, Wang Chengchen, Cui Daolei, Zhang Mengyan, Xiang Ping. Human Health Risk Assessment of Cadmium in Soils: Role of Bioavailability and Toxic Effects[J]. Asian journal of ecotoxicology, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
Citation: Ma Jiaoyang, Bao Xinchen, Wang Kun, Wang Chengchen, Cui Daolei, Zhang Mengyan, Xiang Ping. Human Health Risk Assessment of Cadmium in Soils: Role of Bioavailability and Toxic Effects[J]. Asian journal of ecotoxicology, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001

土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应

    作者简介: 马娇阳(1998-),女,硕士研究生,研究方向为环境健康,E-mail:jiaoyang_ma@163.com
    通讯作者: 向萍, E-mail: ping_xiang@126.com
  • 基金项目:

    国家重点研发计划项目(2018YFC1800504);云南农业基础研究联合专项面上项目(2018FG001-048);国家自然科学基金资助项目(41967026,21906134);国家林业和草原局林草科技创新青年拔尖人才项目(2020132613);云南省高层次人才引进计划项目(YNQR-QNRC-2018-049);云南省教育厅科学研究基金资助项目(2021Y237,2021Y231,2022J0508)

  • 中图分类号: X171.5

Human Health Risk Assessment of Cadmium in Soils: Role of Bioavailability and Toxic Effects

    Corresponding author: Xiang Ping, ping_xiang@126.com
  • Fund Project:
  • 摘要: 镉(Cd)作为最重要的土壤污染物之一,会对人体健康造成严重威胁。Cd污染土壤的健康风险评估受到广泛关注。目前,Cd污染土壤的人体健康风险评价多基于总含量,往往高估其健康风险。近年来,以污染物生物有效性作为评价基础的研究受到广泛认可。本文系统分析了体内外方法(动物模型、体外胃肠模拟方法和肠细胞模型)测定Cd生物有效性的优缺点,综述了各方法在分析土壤Cd生物有效性的影响因素以及生物有效态Cd对动物和细胞模型的毒性效应;提出弄清土壤总Cd含量-生物有效态Cd-毒性效应之间的剂量效应关系,构建基于生物有效性和毒性效应为基础的人体健康风险评估模型,来准确评估其健康风险的思路,以期为土壤Cd健康风险评估及有效阻控提供一定参考。
  • 加载中
  • Qin G W, Niu Z D, Yu J D, et al. Soil heavy metal pollution and food safety in China:Effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205
    Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181:646-662
    国家环境保护总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018[S]. 北京:中国环境科学出版社, 2018
    Ruby M V, Lowney Y W. Selective soil particle adherence to hands:Implications for understanding oral exposure to soil contaminants[J]. Environmental Science & Technology, 2012, 46(23):12759-12771
    Wang K, Ma J Y, Li M Y, et al. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells:Oxidative stress, cell cycle arrest and apoptosis[J]. Science of the Total Environment, 2021, 756:143951
    Cao P Q, Fujimori T, Juhasz A, et al. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana[J]. Chemosphere, 2020, 240:124909
    Han Y, Tang Z W, Sun J Z, et al. Heavy metals in soil contaminated through e-waste processing activities in a recycling area:Implications for risk management[J]. Process Safety and Environmental Protection, 2019, 125:189-196
    马娇阳, 田稳, 王坤, 等. 污染场地土壤重金属的生物可给性及毒性研究[J]. 中国环境科学, 2021, 41(10):4885-4893

    Ma J Y, Tian W, Wang K, et al. Bioaccessibility and their toxic effects of heavy metal in field soils from an electronic disassembly plant[J]. China Environmental Science, 2021, 41(10):4885-4893(in Chinese)

    Li H B, Li J, Li S W, et al. Application of Oral Bioavailability to Remediation of Contaminated Soils:Method Development for Bioaccessible As, Pb, and Cd[M]//Twenty Years of Research and Development on Soil Pollution and Remediation in China. Singapore:Springer Singapore, 2018:189-216
    Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
    Kang Y, Pan W J, Liang S Y, et al. Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay[J]. Environmental Geochemistry and Health, 2016, 38(5):1183-1191
    唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8):1775-1790

    Tang W Z, Sun L, Shan B Q. Research progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1775-1790(in Chinese)

    Ng J C, Juhasz A, Smith E, et al. Assessing the bioavailability and bioaccessibility of metals and metalloids[J]. Environmental Science and Pollution Research, 2015, 22(12):8802-8825
    Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030
    Li H B, Li M Y, Zhao D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils:Measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13):1303-1338
    Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils:A review[J]. Environmental Pollution, 2011, 159(10):2320-2327
    Fu J, Cui Y S. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables:The influence of cooking and additives[J]. Food and Chemical Toxicology, 2013, 59:215-221
    Aziz R, Rafiq M T, Li T Q, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(13):3599-3608
    Akkajit P, Tongcumpou C. Fractionation of metals in cadmium contaminated soil:Relation and effect on bioavailable cadmium[J]. Geoderma, 2010, 156(3-4):126-132
    Zhang R R, Zhang Q, Ma L Q, et al. Effects of food constituents on absorption and bioaccessibility of dietary synthetic phenolic antioxidant by Caco-2 cells[J]. Journal of Agricultural and Food Chemistry, 2020, 68(16):4670-4677
    王维薇, 林清. 国内外土壤镉污染及其修复技术的现状与展望[J]. 绿色科技, 2017(4):90-93, 102

    Wang W W, Lin Q. Present situation and prospect of soil cadmium pollution and remediation technology at home and abroad[J]. Journal of Green Science and Technology, 2017(4):90-93, 102(in Chinese)

    陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10):2219-2238

    Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10):2219-2238(in Chinese)

    Duan Q N, Lee J, Liu Y S, et al. Distribution of heavy metal pollution in surface soil samples in China:A graphical review[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(3):303-309
    United States Environmental Protection Agency (US EPA). EPA/600/R-09/052F Exposure Factors Handbook (Final Edition)[S]. Washington DC:US EPA, 2011
    中华人民共和国环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京:中国环境科学出版社, 2013:664-669 Ministry of Environmental Protection of the People's Republic of China. Exposure Factors Handbook of Chinese Population[M]. Beijing:China Environmental Science Press, 2013:664

    -669(in Chinese)

    国家环境保护总局. 污染场地风险评估技术导则:HJ 25.3-2014[S]. 北京:中国环境科学出版社, 2014
    李梦莹, 王成尘, 毕珏, 等. 食品中重金属的人体健康风险评估方法研究进展[J]. 福建农林大学学报:自然科学版, 2021, 50(1):1-9

    Li M Y, Wang C C, Bi J, et al. Human health risk assessment of heavy metals in food:A review[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2021, 50(1):1-9(in Chinese)

    Zhu X, Li M Y, Chen X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils:Coupling mouse bioassay with UBM assay[J]. Environment International, 2019, 130:104875
    Li H B, Li M Y, Zhao D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:A review[J]. Environmental Science & Technology, 2019, 53(18):10545-10559
    Bradham K D, Diamond G L, Burgess M, et al. In vivo and in vitro methods for evaluating soil arsenic bioavailability:Relevant to human health risk assessment[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2018, 21(2):83-114
    Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental Science & Technology, 2012, 46(11):6252-6260
    Schroder J L, Basta N T, Si J T, et al. In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil[J]. Environmental Science & Technology, 2003, 37(7):1365-1370
    Hugenholtz F, Vos W M. Mouse models for human intestinal microbiota research:A critical evaluation[J]. Cellular and Molecular Life Sciences, 2018, 75(1):149-160
    Roberts S M, Munson J W, Lowney Y W, et al. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey[J]. Toxicological Sciences, 2007, 95(1):281-288
    Yan K H, Dong Z M, Wijayawardena M A A, et al. Measurement of soil lead bioavailability and influence of soil types and properties:A review[J]. Chemosphere, 2017, 184:27-42
    Juhasz A L, Weber J, Naidu R, et al. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies[J]. Environmental Science & Technology, 2010, 44(13):5240-5247
    Li H B, Chen X Q, Wang J Y, et al. Antagonistic interactions between arsenic, lead, and cadmium in the mouse gastrointestinal tract and their influences on metal relative bioavailability in contaminated soils[J]. Environmental Science & Technology, 2019, 53(24):14264-14272
    Sarkar A, Ravindran G. A brief review on the effect of cadmium toxicity:From cellular to organ level[J]. International Journal of Bio-Technology and Research, 2013, 3(1):17-36
    Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430
    Deutsches Institut für Normung e.V. (DIN). DIN 19738, Soil Quality-Bioaccessibility of Organic and Inorganic Pollutants from Contaminated Soil Material[S]. Berlin:DIN, 2017
    Han Q, Wang M S, Cao J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and Environmental Safety, 2020, 191:110157
    Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521
    Cui X Y, Xiang P, He R W, et al. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices[J]. Chemosphere, 2016, 150:378-389
    Calatayud M, Vázquez M, Devesa V, et al. In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures[J]. Chemical Research in Toxicology, 2012, 25(12):2654-2662
    Aziz R, Rafiq M T, Yang J, et al. Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702)[J]. BioMed Research International, 2014, 2014:839538
    王振洲, 崔岩山, 张震南, 等. Caco-2细胞模型评估金属人体生物有效性的研究进展[J]. 生态毒理学报, 2014, 9(6):1027-1034

    Wang Z Z, Cui Y S, Zhang Z N, et al. Evaluation on the human bioavailability of metals using Caco-2 cell model:A review[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1027-1034(in Chinese)

    Boim A G F, Wragg J, Canniatti-Brazaca S G, et al. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices[J]. Environmental Geochemistry and Health, 2020, 42(2):601-615
    Pan W J, Kang Y, Zeng L X, et al. Comparison of in vitro digestion model with in vivo relative bioavailability of BDE-209 in indoor dust and combination of in vitro digestion/Caco-2 cell model to estimate the daily intake of BDE-209 via indoor dust[J]. Environmental Pollution, 2016, 218:497-504
    Leonard F, Collnot E M, Lehr C M. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Molecular Pharmaceutics, 2010, 7(6):2103-2119
    Mahler G J, Esch M B, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271
    Lv Q, He Q, Wu Y, et al. Investigating the bioaccessibility and bioavailability of cadmium in a cooked rice food matrix by using an 11-day rapid Caco-2/HT-29 co-culture cell model combined with an in vitro digestion model[J]. Biological Trace Element Research, 2019, 190(2):336-348
    Aziz R, Rafiq M T, He Z L, et al. In vitro assessment of cadmium bioavailability in Chinese cabbage grown on different soils and its toxic effects on human health[J]. BioMed Research International, 2015, 2015:285351
    Breton J, Clère K, Daniel C, et al. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine[J]. Archives of Toxicology, 2013, 87(10):1787-1795
    He X W, Qi Z D, Hou H, et al. Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure[J]. Chemosphere, 2020, 246:125747
    Bashir M, Meddings J, Alshaikh A, et al. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2019, 316(1):G1-G14
    Ba Q, Li M, Chen P Z, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice[J]. Environmental Health Perspectives, 2017, 125(3):437-446
    Li X S, Li H W, Cai D B, et al. Chronic oral exposure to cadmium causes liver inflammation by NLRP3 inflammasome activation in pubertal mice[J]. Food and Chemical Toxicology, 2021, 148:111944
    王漫莉, 罗启仕, 冉雨灵, 等. 受污染土壤中重金属的蚯蚓生物有效性评估研究进展[J]. 生态与农村环境学报, 2019, 35(9):1097-1102

    Wang M L, Luo Q S, Ran Y L, et al. Research advances in the assessment of heavy metal bioavailability to earthworms in contaminated soils[J]. Journal of Ecology and Rural Environment, 2019, 35(9):1097-1102(in Chinese)

    杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2):217-223

    Yang J, Qu P, Wang J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors[J]. Environmental Pollution & Control, 2017, 39(2):217-223(in Chinese)

    Shahid M, Dumat C, Khalid S, et al. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System[M]. New York:Springer, 2016:73-137
    毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10):1669-1676

    Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils:A review[J]. Research of Environmental Sciences, 2018, 31(10):1669-1676(in Chinese)

    Tian H Q, Wang Y Z, Xie J F, et al. Effects of soil properties and land use types on the bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1):64-70
    Ollson C J, Smith E, Herde P, et al. Influence of sample matrix on the bioavailability of arsenic, cadmium and lead during co-contaminant exposure[J]. Science of the Total Environment, 2017, 595:660-665
    Ollson C J, Smith E, Herde P, et al. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead[J]. Chemosphere, 2017, 168:658-666
    Zou R, Wang L, Li Y C, et al. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency[J]. Environmental Pollution, 2020, 256:113410
    Hamel S C, Buckley B, Lioy P J. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid[J]. Environmental Science & Technology, 1998, 32(3):358-362
    Lu M J, Li G Y, Yang Y, et al. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 2021, 752:142001
    Oomen A G, Rompelberg C J M, Kamp E V D, et al. Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(2):183-188
    Sun D X, Lennernas H, Welage L S, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12, 000 gene sequences tags and correlation with permeability of 26 drugs[J]. Pharmaceutical Research, 2002, 19(10):1400-1416
    Balimane P V, Chong S. Cell culture-based models for intestinal permeability:A critique[J]. Drug Discovery Today, 2005, 10(5):335-343
    Sun S, Zhou X F, Li Y W, et al. Use of dietary components to reduce the bioaccessibility and bioavailability of cadmium in rice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14):4166-4175
  • 加载中
计量
  • 文章访问数:  5437
  • HTML全文浏览数:  5437
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-20
马娇阳, 保欣晨, 王坤, 王成尘, 崔道雷, 张梦妍, 向萍. 土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应[J]. 生态毒理学报, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
引用本文: 马娇阳, 保欣晨, 王坤, 王成尘, 崔道雷, 张梦妍, 向萍. 土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应[J]. 生态毒理学报, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
Ma Jiaoyang, Bao Xinchen, Wang Kun, Wang Chengchen, Cui Daolei, Zhang Mengyan, Xiang Ping. Human Health Risk Assessment of Cadmium in Soils: Role of Bioavailability and Toxic Effects[J]. Asian journal of ecotoxicology, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001
Citation: Ma Jiaoyang, Bao Xinchen, Wang Kun, Wang Chengchen, Cui Daolei, Zhang Mengyan, Xiang Ping. Human Health Risk Assessment of Cadmium in Soils: Role of Bioavailability and Toxic Effects[J]. Asian journal of ecotoxicology, 2021, 16(6): 120-132. doi: 10.7524/AJE.1673-5897.20210120001

土壤镉污染的人体健康风险评价研究:生物有效性与毒性效应

    通讯作者: 向萍, E-mail: ping_xiang@126.com
    作者简介: 马娇阳(1998-),女,硕士研究生,研究方向为环境健康,E-mail:jiaoyang_ma@163.com
  • 1. 西南林业大学生态与环境学院/环境修复与健康研究院, 昆明 650224;
  • 2. 西南林业大学环境污染与食品安全及人体健康云南省创新团队, 昆明 650224
基金项目:

国家重点研发计划项目(2018YFC1800504);云南农业基础研究联合专项面上项目(2018FG001-048);国家自然科学基金资助项目(41967026,21906134);国家林业和草原局林草科技创新青年拔尖人才项目(2020132613);云南省高层次人才引进计划项目(YNQR-QNRC-2018-049);云南省教育厅科学研究基金资助项目(2021Y237,2021Y231,2022J0508)

摘要: 镉(Cd)作为最重要的土壤污染物之一,会对人体健康造成严重威胁。Cd污染土壤的健康风险评估受到广泛关注。目前,Cd污染土壤的人体健康风险评价多基于总含量,往往高估其健康风险。近年来,以污染物生物有效性作为评价基础的研究受到广泛认可。本文系统分析了体内外方法(动物模型、体外胃肠模拟方法和肠细胞模型)测定Cd生物有效性的优缺点,综述了各方法在分析土壤Cd生物有效性的影响因素以及生物有效态Cd对动物和细胞模型的毒性效应;提出弄清土壤总Cd含量-生物有效态Cd-毒性效应之间的剂量效应关系,构建基于生物有效性和毒性效应为基础的人体健康风险评估模型,来准确评估其健康风险的思路,以期为土壤Cd健康风险评估及有效阻控提供一定参考。

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回