植物对土壤重金属富集特性研究进展

周晓声, 娄厦, Larisa Dorzhievna Radnaeva, Elena Nikitina, 汪豪. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
引用本文: 周晓声, 娄厦, Larisa Dorzhievna Radnaeva, Elena Nikitina, 汪豪. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
Zhou Xiaosheng, Lou Sha, Larisa Dorzhievna Radnaeva, Elena Nikitina, Wang Hao. Advances in Heavy Metal Accumulation Characteristics of Plants in Soil[J]. Asian journal of ecotoxicology, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
Citation: Zhou Xiaosheng, Lou Sha, Larisa Dorzhievna Radnaeva, Elena Nikitina, Wang Hao. Advances in Heavy Metal Accumulation Characteristics of Plants in Soil[J]. Asian journal of ecotoxicology, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001

植物对土壤重金属富集特性研究进展

    作者简介: 周晓声(1997—),男,硕士研究生,研究方向为河口海岸水动力与水环境,E-mail:2032441@tongji.edu.cn
    通讯作者: 娄厦, E-mail: lousha@tongji.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42072281);上海市“科技创新行动计划”资助项目(20230742500,22ZR1464200);中央高校基本科研业务费专项(22120210576)

  • 中图分类号: X171.5

Advances in Heavy Metal Accumulation Characteristics of Plants in Soil

    Corresponding author: Lou Sha, lousha@tongji.edu.cn
  • Fund Project:
  • 摘要: 植物修复是土壤重金属污染修复的有效手段之一,其修复过程、影响因素及机理已经得到广泛研究。明确植物富集重金属过程中的影响因素,诱导提高植物修复能力是提高植物修复重金属污染效果的关键。本文在总结国内外研究现状的基础上,对植物富集重金属的特性和影响植物富集的因素以及对植物富集重金属的评价指标进行了综述。
  • 加载中
  • 彭曦. 镉污染农田土壤植物修复的强化措施及其效果研究[D]. 长沙:湖南师范大学, 2020:1-95 Peng X. Study on strengthening measures and effects of phytoremediation of Cd-contaminated farmland soil[D]. Changsha:Hunan Normal University, 2020:1

    -95(in Chinese)

    徐一芃, 黄益宗, 张利田, 等. 镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报, 2020, 14(10):2882-2894

    Xu Y P, Huang Y Z, Zhang L T, et al. Bibliometric analysis of remediation techniques for cadmium and arsenic contaminated soil[J]. Chinese Journal of Environmental Engineering, 2020, 14(10):2882-2894(in Chinese)

    安婧, 宫晓双, 魏树和. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志, 2015, 34(11):3261-3270

    An J, Gong X S, Wei S H. Research progress on technologies of phytoremediation of heavy metal contaminated soils[J]. Chinese Journal of Ecology, 2015, 34(11):3261-3270(in Chinese)

    薛欢, 刘志祥, 严明理. 植物超积累重金属的生理机制研究进展[J]. 生物资源, 2019, 41(4):289-297

    Xue H, Liu Z X, Yan M L. Advances in physiological mechanisms of heavy metal hyperaccumulation by plants[J]. Biotic Resources, 2019, 41(4):289-297(in Chinese)

    Chen G C, Liu Y Q, Wang R M, et al. Cadmium adsorption by willow root:The role of cell walls and their subfractions[J]. Environmental Science and Pollution Research International, 2013, 20(8):5665-5672
    Kopittke P M, Asher C J, Blamey F P, et al. Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana)[J]. Environmental Science & Technology, 2008, 42(12):4595-4599
    Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant and Soil, 1987, 101(1):15-20
    赵克俭. 城市重金属污染水体的植物修复试验研究[J]. 安徽农业科学, 2010, 38(14):7462-7464

    , 7466 Zhao K J. Experimental research on plants repairing to city water resource polluted by heavy metal[J]. Journal of Anhui Agricultural Sciences, 2010, 38(14):7462-7464, 7466(in Chinese)

    刘文菊, 朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报, 2005, 25(2):358-363

    Liu W J, Zhu Y G. Iron and Mn plaques on the surface of roots of wetland plants[J]. Acta Ecologica Sinica, 2005, 25(2):358-363(in Chinese)

    胡莹, 黄益宗, 黄艳超, 等. 根表铁膜对水稻铅吸收转运的影响[J]. 生态毒理学报, 2014, 9(1):35-41

    Hu Y, Huang Y Z, Huang Y C, et al. Influence of iron plaque on Pb uptake and translocation by rice (Oryza sativa L.)[J]. Asian Journal of Ecotoxicology, 2014, 9(1):35-41(in Chinese)

    Zhang X K, Zhang F S, Mao D. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.):Phosphorus uptake[J]. Plant and Soil, 1999, 209:187-192
    Zhou X B, Shi W M. Effect of root surface iron plaque on Se translocation and uptake by Fe-deficient rice[J]. Pedosphere, 2007, 17(5):580-587
    何玉君, 孙梦荷, 沈亚婷, 等. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5):639-657

    He Y J, Sun M H, Shen Y T, et al. Research progress on the interaction mechanism between hyperaccumulator and heavy metals and its application[J]. Rock and Mineral Analysis, 2020, 39(5):639-657(in Chinese)

    Rodriguez-Hernandez M C, Bonifas I, Alfaro-De la Torre M C, et al. Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia:A study of two pore channel (TPC1) gene responses[J]. Environmental and Experimental Botany, 2015, 115:38-48
    He B Y, Yu D P, Chen Y, et al. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.)[J]. Chemosphere, 2017, 171:588-594
    Deng T H B, van der Ent A, Tang Y T, et al. Nickel hyperaccumulation mechanisms:A review on the current state of knowledge[J]. Plant and Soil, 2018, 423(1-2):1-11
    Bothe H, Słomka A. Divergent biology of facultative heavy metal plants[J]. Journal of Plant Physiology, 2017, 219:45-61
    Pinto E, Sigaud-kutner T C S, Leitão M A S, et al. Heavy metal-induced oxidative stress in algae[J]. Journal of Phycology, 2003, 39(6):1008-1018
    Hou X L, Han H, Cai L P, et al. Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings[J]. Flora, 2018, 240:82-88
    胡国涛, 杨兴, 陈小米, 等.[J]. 环境科学学报, 2016, 36(10):3870-3875

    Hu G T, Yang X, Chen X M, et al. Physiological responses of bamboo-willow plants to heavy metal stress[J]. Acta Scientiae Circumstantiae, 2016, 36(10):3870-3875(in Chinese)

    Li X, Zhou Y L, Yang Y Q, et al. Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes [J]. PLoS One, 2015, 10(4):e0124304
    Fediuc E, Erdei L. Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia [J]. Journal of Plant Physiology, 2002, 159(3):265-271
    葛依立, 陈心胜, 黄道友, 等. 湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应[J]. 生态毒理学报, 2020, 15(2):190-200

    Ge Y L, Chen X S, Huang D Y, et al. Accumulation characteristics and physiological responses of the wetland plant, Polygonum hydropiper L. to cadmium[J]. Asian Journal of Ecotoxicology, 2020, 15(2):190-200(in Chinese)

    Wang S F, Zhao Y, Guo J H, et al. Antioxidative response in leaves and allelochemical changes in root exudates of Ricinus communis under Cu, Zn, and Cd stress[J]. Environmental Science and Pollution Research International, 2018, 25(32):32747-32755
    汤茜, 朱四喜, 赵斌, 等. 湿地植物再力花对铬胁迫的生理生化响应[J]. 科学技术与工程, 2018, 18(35):108-115

    Tang Q, Zhu S X, Zhao B, et al. Physiological and biochemical responses of Thalia dealbata of wetland plants to Cr stress[J]. Science Technology and Engineering, 2018, 18(35):108-115(in Chinese)

    李星, 刘鹏, 徐根娣, 等. 人工湿地植物对电镀废水的净化和修复效果研究[J]. 浙江林业科技, 2008, 28(4):16-21

    Li X, Liu P, Xu G D, et al. Study on phytopurification and phytoremediation of electroplating sewage by wetland plants[J]. Journal of Zhejiang Forestry Science and Technology, 2008, 28(4):16-21(in Chinese)

    代军, 陶春元, 孙剑奇. 鄱阳湖水生植物对重金属铜、铅、锌的富集作用研究[J]. 九江学院学报:自然科学版, 2010, 25(4):5-8

    Dai J, Tao C Y, Sun J Q. Study on accumulation of heavy metal Cu, Pb, Zn in aquatic plants of Poyang Lake[J]. Journal of Jiujiang University:Natural Science Edition, 2010, 25(4):5-8(in Chinese)

    谢丹超. 湿地修复生态工程中水生植物对重金属Cu、Zn污染废水的净化研究[D]. 杭州:浙江大学, 2005:1-59 Xie D C. Copper and zinc removal by aquatic plants in constructed wetland ecosystem[D]. Hangzhou:Zhejiang University, 2005:1

    -59(in Chinese)

    Rai P K. Heavy metal phyto-technologies from Ramsar wetland plants:Green approach[J]. Chemistry and Ecology, 2018, 34(8):786-796
    林芳芳, 丛鑫, 黄锦楼, 等. 人工湿地植物对重金属铅的抗性[J]. 环境工程学报, 2014, 8(6):2329-2334

    Lin F F, Cong X, Huang J L, et al. Resistance of artificial wetland plants to lead[J]. Chinese Journal of Environmental Engineering, 2014, 8(6):2329-2334(in Chinese)

    韦江玲, 潘良浩, 陈元松, 等. 重金属Cr6+胁迫对茳芏生理生态特征的影响[J]. 广西植物, 2014, 34(1):89-94

    Wei J L, Pan L H, Chen Y S, et al. Physiological and ecological characteristics of Cyperus malaccensis to Cr6+ stress[J]. Guihaia, 2014, 34(1):89-94(in Chinese)

    Abdel-Sabour M F, Mortvedt J J, Kelsoe J J. Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil[J]. Soil Science, 1988, 145(6):424-431
    徐楠. 汞、镉及其复合污染对浮萍的毒害影响及细胞凋亡机制的初探[D]. 南京:南京师范大学, 2003:1-58
    何婷婷. 超高含量重金属复合污染土壤中东南景天修复机制研究[D]. 武汉:武汉理工大学, 2020:1-79 He T T. Study on the remediation mechanism of Sedum alfredii in the soil polluted by ultra-high content heavy metals[D]. Wuhan:Wuhan University of Technology, 2020:1

    -79(in Chinese)

    欧琪琪, 陈永华, 付雄略, 等. 3种改良剂对铅锌矿渣中重金属形态及植物富集的影响[J]. 环境污染与防治, 2019, 41(9):1026-1031

    Ou Q Q, Chen Y H, Fu X L, et al. Effects of three conditioners on plant enrichment and matrix forms of heavy metals in lead-zinc slag[J]. Environmental Pollution & Control, 2019, 41(9):1026-1031(in Chinese)

    张帅, 方晓晴, 万敏, 等. 土壤酸胁迫对2种植物生长及镉富集的影响[J]. 安徽农业科学, 2020, 48(17):104-107

    , 155 Zhang S, Fang X Q, Wan M, et al. Effects of soil acid stress on the growth and cadmium accumulation of two plants[J]. Journal of Anhui Agricultural Sciences, 2020, 48(17):104-107, 155(in Chinese)

    Brown S L, Chaney R L, Angle J S, et al. Phytoremediation potential of Thlaspi caerulescens and bladder Campion for zinc- and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6):1151-1157
    仇荣亮, 刘凤杰, 万云兵, 等. 植物A.murale和A.corsicum修复镍污染土壤[J]. 中国环境科学, 2008, 28(11):1026-1031

    Qiu R L, Liu F J, Wan Y B, et al. Phytoremediation on nickel-contaminated soils by hyperaccumulators Alyssum corsicum and Alyssum murale [J]. China Environmental Science, 2008, 28(11):1026-1031(in Chinese)

    Kukier U, Peters C A, Chaney R L, et al. The effect of pH on metal accumulation in two Alyssum species[J]. Journal of Environmental Quality, 2004, 33(6):2090-2102
    Fritioff A, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants[J]. Environmental Pollution, 2005, 133(2):265-274
    Hasegawa I, Shinmachi F, Noguchi A, et al. Physiological characterisation of root cell Cd2+ absorption and translocation to shoots in Brassica[J]. Develop Plant Soil, 2001, 92:448-449
    Zhao F J, Hamon R E, Lombi E, et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens [J]. Journal of Experimental Botany, 2002, 53(368):535-543
    彭克俭. 矿业废弃地植物对重金属的积累及其机理的初步研究[D]. 南京:南京农业大学, 2006:1-165 Peng K J. Heavy metal accumulation and mechanisms by plants in mining and smelter wastelands[D]. Nanjing:Nanjing Agricultural University, 2006:1

    -165(in Chinese)

    郑黎明, 袁静. 重金属污染土壤植物修复技术及其强化措施[J]. 环境科技, 2017, 30(1):75-78

    Zheng L M, Yuan J. Phytoremediation of soils contaminated by heavy metals and strengthening measures[J]. Environmental Science and Technology, 2017, 30(1):75-78(in Chinese)

    Liu C Y, Gong X F, Tang Y P, et al. Lead sequestration in iron plaques developed on Phalaris arundinacea Linn. and Carex cinerascens Kukenth. from Poyang Lake (China)[J]. Aquatic Botany, 2015, 122:54-59
    刘春英. 鄱阳湖湿地植物根表铁膜的形成及对铅的转运机制研究[D]. 南昌:南昌大学, 2015:1-126 Liu C Y. Study on the formation of iron plaque on the root surfaces of wetland plants from Poyang Lake and its translocation mechanism on lead[D]. Nanchang:Nanchang University, 2015:1

    -126(in Chinese)

    吴仁杰, 陈银萍, 曹雯婕, 等. 营养元素与螯合剂强化植物修复重金属污染土壤研究进展[J]. 中国土壤与肥料, 2021(5):328-337 Wu R J, Chen Y P, Cao W J, et al. Research advances in phytoremediation of heavy metal contaminated soil strengthened by chelating agents and nutrient elements[J]. Soil and Fertilizer Sciences in China, 2021

    (5):328-337(in Chinese)

    李勤锋. 红蛋植物对重金属镉的吸收累积特性研究[D]. 南宁:广西大学, 2012:1-60 Li Q F. Uptake and accumulation of cadmium in Echinodorus osiris plant[D]. Nanning:Guangxi University, 2012:1

    -60(in Chinese)

    陈永亮. 不同氮源处理对红松苗木根际pH及养分有效性的影响[J]. 南京林业大学学报:自然科学版, 2004, 28(1):42-46

    Chen Y L. The effects of different nitrogen sources on pH and the nutrient availability in the rhizosphere of Korean pine[J]. Journal of Nanjing Forestry University, 2004, 28(1):42-46(in Chinese)

    王朋超, 孙约兵, 徐应明, 等. 施用磷肥对南方酸性红壤镉生物有效性及土壤酶活性影响[J]. 环境化学, 2016, 35(1):150-158

    Wang P C, Sun Y B, Xu Y M, et al. Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J]. Environmental Chemistry, 2016, 35(1):150-158(in Chinese)

    Li Y P, Sun M J, He W, et al. Effect of phosphorus supplementation on growth, nutrient uptake, physiological responses, and cadmium absorption by tall fescue (Festuca arundinacea Schreb.) exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2021, 213:112021
    程娜. 北京河流修复中水生植物群落构建与优化配置研究[D]. 郑州:华北水利水电大学, 2020:79 Cheng N. Study on the construction and optimal allocation of aquatic plant communities in Beijing River restoration[D]. Zhengzhou:North China University of Water Resources and Electric Power, 2020:79(in Chinese)
    Rai P K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland[J]. Environmental Technology & Innovation, 2019, 15:100393
    Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1-3):441-446
    Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements, A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2):81-126
    Lafabrie C, Major K M, Major C S, et al. Trace metal contamination of the aquatic plant Hydrilla verticillata and associated sediment in a coastal Alabama creek (Gulf of Mexico-USA)[J]. Marine Pollution Bulletin, 2013, 68(1-2):147-151
    Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetland plants:Ⅰ. Duckweed[J]. Journal of Environmental Quality, 1998, 27(3):715-721
    Mattina M I, Lannucci-Berger W, Musante C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J]. Environmental Pollution, 2003, 124(3):375-378
    Zhang X C, Zhang S R, Xu X X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3):303-308
    Chayapan P, Kruatrachue M, Meetam M, et al. Effects of amendments on growth and uptake of Cd and Zn by wetland plants, Typha angustifolia and Colocasia esculenta from contaminated sediments[J]. International Journal of Phytoremediation, 2015, 17(9):900-906
    Khellaf N, Zerdaoui M. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.[J]. Bioresource Technology, 2009, 100(23):6137-6140
    Upadhyay A K, Singh N K, Bankoti N S, et al. Designing and construction of simulated constructed wetland for treatment of sewage containing metals[J]. Environmental Technology, 2017, 38(21):2691-2699
    王宜辰. Freundlich吸附等温式的理论推导[J]. 烟台师范学院学报:自然科学版, 1993, 9(4):76-78
    张丹, 张世熔, 王新月, 等. 四种植物材料对废水中铅离子的吸附特征[J]. 地球与环境, 2020, 48(6):711-718

    Zhang D, Zhang S R, Wang X Y, et al. Adsorption characteristics of lead ions in wastewater by four plant derived materials[J]. Earth and Environment, 2020, 48(6):711-718(in Chinese)

    黄依佳, 吴剑荣, 朱莉, 等. 太湖蓝藻多糖应用于重金属离子吸附[J]. 生物加工过程, 2019, 17(2):214-219

    Huang Y J, Wu J R, Zhu L, et al. Adsorption of heavy metal by polysaccharide of Cyanobacteria from Taihu Lake[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(2):214-219(in Chinese)

    刘冉. 大型湿地植物对不同盐度水产养殖废水中多种污染物的吸收效果研究[D]. 南京:南京农业大学, 2017:1-121 Liu R. Studies of the absorption to various pollutant of large wetland plants in aquaculture wastewater with various salinity[D]. Nanjing:Nanjing Agricultural University, 2017:1

    -121(in Chinese)

    杨俊兴, 胡健, 雷梅, 等. 锌胁迫下湿地植物抗氧化系统反应及锌富集能力[J]. 生态学杂志, 2017, 36(8):2274-2281

    Yang J X, Hu J, Lei M, et al. Antioxidant system responses and bioaccumulation of Zn in wetland plants under Zn stress[J]. Chinese Journal of Ecology, 2017, 36(8):2274-2281(in Chinese)

    Monni S, Salemaa M, White C, et al. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland[J]. Environmental Pollution, 2000, 109(2):211-219
    刘宛茹. 湿地植物红蛋对重金属镉的解毒机制研究[D]. 南宁:广西大学, 2013:1-57 Liu W R. Mechanisms of cadmium detoxification in wetland plant Echinodorus osiris [D]. Nanning:Guangxi University, 2013:1

    -57(in Chinese)

    张晓斌. 植物修复在水环境污染治理中的研究[D]. 金华:浙江师范大学, 2007:1-87 Zhang X B. Research on phytoremediation for pollution control in water environment[D]. Jinhua:Zhejiang Normal University, 2007:1

    -87(in Chinese)

  • 加载中
计量
  • 文章访问数:  5339
  • HTML全文浏览数:  5339
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-08-03
周晓声, 娄厦, Larisa Dorzhievna Radnaeva, Elena Nikitina, 汪豪. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
引用本文: 周晓声, 娄厦, Larisa Dorzhievna Radnaeva, Elena Nikitina, 汪豪. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
Zhou Xiaosheng, Lou Sha, Larisa Dorzhievna Radnaeva, Elena Nikitina, Wang Hao. Advances in Heavy Metal Accumulation Characteristics of Plants in Soil[J]. Asian journal of ecotoxicology, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001
Citation: Zhou Xiaosheng, Lou Sha, Larisa Dorzhievna Radnaeva, Elena Nikitina, Wang Hao. Advances in Heavy Metal Accumulation Characteristics of Plants in Soil[J]. Asian journal of ecotoxicology, 2022, 17(3): 400-410. doi: 10.7524/AJE.1673-5897.20210803001

植物对土壤重金属富集特性研究进展

    通讯作者: 娄厦, E-mail: lousha@tongji.edu.cn
    作者简介: 周晓声(1997—),男,硕士研究生,研究方向为河口海岸水动力与水环境,E-mail:2032441@tongji.edu.cn
  • 1. 同济大学土木工程学院水利工程系, 上海 200092;
  • 2. 同济大学长江水环境教育部重点实验室, 上海 200092;
  • 3. 俄罗斯科学院西伯利亚分院贝加尔湖自然管理研究所自然系统化学实验室, 乌兰乌德 670047, 俄罗斯联邦布里亚特共和国, 俄罗斯联邦
基金项目:

国家自然科学基金资助项目(42072281);上海市“科技创新行动计划”资助项目(20230742500,22ZR1464200);中央高校基本科研业务费专项(22120210576)

摘要: 植物修复是土壤重金属污染修复的有效手段之一,其修复过程、影响因素及机理已经得到广泛研究。明确植物富集重金属过程中的影响因素,诱导提高植物修复能力是提高植物修复重金属污染效果的关键。本文在总结国内外研究现状的基础上,对植物富集重金属的特性和影响植物富集的因素以及对植物富集重金属的评价指标进行了综述。

English Abstract

参考文献 (70)

返回顶部

目录

/

返回文章
返回