水-土壤环境中抗生素污染现状及吸附行为研究进展

卫承芳, 李佳乐, 孙占学, 董一慧, 向令, 周永康, 向行. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
引用本文: 卫承芳, 李佳乐, 孙占学, 董一慧, 向令, 周永康, 向行. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
Wei Chengfang, Li Jiale, Sun Zhanxue, Dong Yihui, Xiang Ling, Zhou Yongkang, Xiang Xing. Research Progress of Antibiotic Pollution and Adsorption Behavior in Water-Soil Environment[J]. Asian journal of ecotoxicology, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
Citation: Wei Chengfang, Li Jiale, Sun Zhanxue, Dong Yihui, Xiang Ling, Zhou Yongkang, Xiang Xing. Research Progress of Antibiotic Pollution and Adsorption Behavior in Water-Soil Environment[J]. Asian journal of ecotoxicology, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002

水-土壤环境中抗生素污染现状及吸附行为研究进展

    作者简介: 卫承芳(1996—),女,硕士研究生,研究方向为环境有机污染,E-mail:1419612048@qq.com
    通讯作者: 李佳乐, E-mail: lijiale39@126.com
  • 基金项目:

    国家自然科学基金委员会与金砖国家科技创新框架计划合作研究项目(51861145308);江西省青年科学基金资助项目(20202BAB213015);江西省教育厅科学技术研究项目(GJJ200769)

  • 中图分类号: X171.5

Research Progress of Antibiotic Pollution and Adsorption Behavior in Water-Soil Environment

    Corresponding author: Li Jiale, lijiale39@126.com
  • Fund Project:
  • 摘要: 近年来,在水-土壤环境中频繁检测出的抗生素,对人类健康和生态系统已产生不容忽视的风险。其中,在环境中常被检测到的磺胺类(sulfonamides,SAs)、四环素类(tetracyclines,TCs)、大环内酯类(macrolides,MLs)和氟喹诺酮类(fluoroquinolones,FQs)抗生素在畜牧养殖以及临床医疗广泛应用。本文从3个方向进行了综述:(1)抗生素在水-土壤环境中的分布现状,包括抗生素的来源、使用现状及在水环境、土壤环境中的污染现状,并对比四大类典型抗生素在不同地区环境介质中的污染情况;(2)分析抗生素在水-土壤环境中的吸附行为,探究金属离子、pH、有机质及分子结构对抗生素吸附行为的影响;(3)对水-土壤环境中抗生素研究的重点方向进行展望。磺胺类具有良好的化学稳定性和环境迁移能力,在水环境和土壤环境中的残留水平都较高且在水环境中更容易残留。四环素类具有良好的水溶性、光解特性以及较高的辛醇-水分配系数(Kow),容易被沉积物或土壤吸附。氟喹诺酮类自身性质稳定,半衰期长,比其他类抗生素具有更强的土壤蓄积能力和持久性,在水环境中频繁被检出。大环内酯类在水环境中不仅具有较高的生物可降解性,并且由于其衰减速率较高,使得此类物质在被吸附到沉积物中之后很难迁移到深层沉积物中。
  • 加载中
  • Kim K R, Owens G, Kwon S I, et al. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment[J]. Water, Air, & Soil Pollution, 2011, 214(1-4):163-174
    Yang L, Wu L H, Liu W X, et al. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids[J]. Environmental Science and Pollution Research International, 2018, 25(1):104-114
    Pan M, Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil[J]. Science of the Total Environment, 2016, 545-546:48-56
    Li S, Shi W Z, Liu W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. The Science of the Total Environment, 2018, 615:906-917
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    孙金昭. 城市生活垃圾填埋场中抗生素残留浓度征及抗性基因相关性研究[D]. 上海:华东师范大学, 2017:1-8 Sun J Z. Characteristics of antibiotics contents in municipal solid waste landfills and correlation with antibiotic resistance genes[D]. Shanghai:East China Normal University, 2017:1

    -8(in Chinese)

    Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315
    Xie H W, Hao H S, Xu N, et al. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta:Occurrence, distribution, potential sources, and health risk assessment[J]. The Science of the Total Environment, 2019, 659:230-239
    Li S, Shi W Z, Li H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River Estuary, South China[J]. The Science of the Total Environment, 2018, 636:1009-1019
    李佳乐. 污灌区土壤-地下水系统中典型有机污染物的环境地球化学研究[D]. 武汉:中国地质大学, 2015:35-48 Li J L. Environmental geochemistry of typical organic contaminants in the soil-groundwater system of sewage irrigation area[D]. Wuhan:China University of Geosciences, 2015:35

    -48(in Chinese)

    Huang H W, Zeng S Y, Dong X, et al. Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system[J]. Journal of Environmental Management, 2019, 231:494-503
    Gao P P, Mao D Q, Luo Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Research, 2012, 46(7):2355-2364
    Bouki C, Venieri D, Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants:A review[J]. Ecotoxicology and Environmental Safety, 2013, 91:1-9
    姚林林. 水环境中抗生素的分布、归趋与危害研究[D]. 武汉:中国地质大学, 2017:2-9 Yao L L. The occurrence, fate and hazards of antibiotics in the aquatic environment[D]. Wuhan:China University of Geosciences, 2017:2

    -9(in Chinese)

    冯宝佳, 曾强, 赵亮, 等. 水环境中抗生素的来源分布及对健康的影响[J]. 环境监测管理与技术, 2013, 25(1):14-17

    , 21 Feng B J, Zeng Q, Zhao L, et al. Source distribution of antibiotics in water environment and its impact on human health[J]. The Administration and Technique of Environmental Monitoring, 2013, 25(1):14-17, 21(in Chinese)

    王倩倩. 新疆阿拉山口及周边水环境中多种抗生素的污染水平研究[D]. 石河子:石河子大学, 2016:1-3 Wang Q Q. Pollution levels of antibiotics from aquatic environment in Alashankou Region of Xinjiang and surrounding area[D]. Shihezi:Shihezi University, 2016:1

    -3(in Chinese)

    Xie H, Chen L, Shen Z Y. Assessment of agricultural best management practices using models:Current issues and future perspectives[J]. Water, 2015, 7(12):1088-1108
    Hu X G, He K X, Zhou Q X. Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies[J]. Journal of Hazardous Materials, 2012, 225-226:91-98
    殷强, 付峥嵘. 我国水环境中抗生素污染的研究进展[J]. 安徽农业科学, 2017, 45(31):50-51

    , 55 Yin Q, Fu Z R. Research progress of antibiotic pollution in water environment in China[J]. Journal of Anhui Agricultural Sciences, 2017, 45(31):50-51, 55(in Chinese)

    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    赵艳飞. 复合型植物提取物对三黄鸡生产性能、肉品质及抗病力的影响[D]. 长春:吉林农业大学, 2018:1-9 Zhao Y F. Influence of compound plant extract on growth performance, meat quality and disease resistance of yellow-feathered broilers[D]. Changchun:Jilin Agricultural University, 2018:1

    -9(in Chinese)

    Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater:A review of sources, fate and occurrence[J]. Environmental Pollution, 2012, 163:287-303
    Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759
    Schar D, Klein E Y, Laxminarayan R, et al. Global trends in antimicrobial use in aquaculture[J]. Scientific Reports, 2020, 10(1):21878
    Klein E Y, van Boeckel T P, Martinez E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15):E3463-E3470
    European Community. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance)[J]. Official Journal of the European Union, 2003, L268:29-43
    Cheng A C, Turnidge J, Collignon P, et al. Control of fluoroquinolone resistance through successful regulation, Australia[J]. Emerging Infectious Diseases, 2012, 18(9):1453-1460
    Food and Drug Administration (FDA). Judicious use of antimicrobials-FDA statement on animal pharmaceutical industry response to guidance[EB/oL] [2021-12-19]. http://www.fda.gov/AnimalVeterinary/SafetyHealth/Antimic-robialResistance/JudicioususeofAntimicrobials/ucm38908-3.htm.2014
    Kuppusamy S, Kakarla D, Venkateswarlu K, et al. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue:A critical view[J]. Agriculture, Ecosystems & Environment, 2018, 257:47-59
    Chen L, Lang H, Liu F, et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Ground Water, 2018, 56(3):451-457
    李威, 李佳熙, 李吉平, 等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报:自然科学版, 2020, 44(1):205-214

    Li W, Li J X, Li J P, et al. Pollution characteristics of antibiotics in different environment media in China:A review[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2020, 44(1):205-214(in Chinese)

    Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95:604-612
    Yan M T, Xu C, Huang Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. The Science of the Total Environment, 2018, 631-632:840-848
    Leng Y F, Xiao H L, Li Z, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in coastal areas of Beibu Gulf, China[J]. Science of the Total Environment, 2020, 714:136899
    Huang Y H, Liu Y, Du P P, et al. Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China[J]. The Science of the Total Environment, 2019, 670:170-180
    Kairigo P, Ngumba E, Sundberg L R, et al. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments[J]. The Science of the Total Environment, 2020, 720:137580
    秦晓鹏, 刘菲, 王广才, 等. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质, 2015, 42(3):142-148

    Qin X P, Liu F, Wang G C, et al. Adsorption of antibiotics in soils/sediments:A review[J]. Hydrogeology & Engineering Geology, 2015, 42(3):142-148(in Chinese)

    李晓晶, 于鸿, 甘平胜, 等. 广州市居民动物性膳食中喹诺酮和四环素类抗生素残留暴露评估[J]. 现代预防医学, 2016, 43(24):4447-4451

    Li X J, Yu H, Gan P S, et al. Assessment of exposure of Guangdong residents to quinolones and tetracycline antibiotics in animal dietary[J]. Modern Preventive Medicine, 2016, 43(24):4447-4451(in Chinese)

    Fernandes M J, Paíga P, Silva A, et al. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal[J]. Chemosphere, 2020, 239:124729
    Boy-Roura M, Mas-Pla J, Petrovic M, et al. Towards the understanding of antibiotic occurrence and transport in groundwater:Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain)[J]. Science of the Total Environment, 2018, 612:1387-1406
    Zainab S M, Junaid M, Rehman M Y A, et al. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan[J]. The Science of the Total Environment, 2021, 791:148298
    陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017, 38(12):5074-5080

    Chen W P, Peng C W, Yang Y, et al. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 2017, 38(12):5074-5080(in Chinese)

    张亚茹, 张国栋, 王永强, 等. 新疆赛里木湖近岸表层水典型抗生素的赋存与风险评价[J]. 湖泊科学, 2021, 33(2):483-493

    Zhang Y R, Zhang G D, Wang Y Q, et al. Occurrence and ecological risk of typical antibiotics in surface water of the Lake Sayram, Xinjiang[J]. Journal of Lake Sciences, 2021, 33(2):483-493(in Chinese)

    展海银, 周启星. 环境中四环素类抗生素污染处理技术研究进展[J]. 环境工程技术学报, 2021, 11(3):571-581

    Zhan H Y, Zhou Q X. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(3):571-581(in Chinese)

    张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展[J]. 环境科学与技术, 2019, 42(S1):77-84

    Zhang J, Feng L, Tian J, et al. Distribution characteristics in the environment and research progress treatment technology of fluoroquinolone antibiotics[J]. Environmental Science & Technology, 2019, 42(S1):77-84(in Chinese)

    沙乃庆, 李艳红. 氟喹诺酮类抗生素水污染现状及去除技术研究进展[J]. 工业水处理, 2021, 41(5):22-28

    Sha N Q, Li Y H. Current situation of water pollution and research progress treatment technology of fluoroquinolone antibiotics[J]. Industrial Water Treatment, 2021, 41(5):22-28(in Chinese)

    van Doorslaer X, Dewulf J, van Langenhove H, et al. Fluoroquinolone antibiotics:An emerging class of environmental micropollutants[J]. The Science of the Total Environment, 2014, 500-501:250-269
    吕凯. 典型抗生素在河流中的衰减规律及其机制研究[D]. 合肥:合肥工业大学, 2019:4-6 Lv K. Attenuation and its mechanism of selected antibiotics in river systems[D]. Hefei:Hefei University of Technology, 2019:4

    -6(in Chinese)

    肖健, 刘林梅, 邹世春. 水环境中红霉素和罗红霉素抗生素光降解的研究[J]. 广州化学, 2008, 33(2):1-5

    , 12 Xiao J, Liu L M, Zou S C. Photodegradation behavior of representative macrolide antibiotics in water environment[J]. Guangzhou Chemistry, 2008, 33(2):1-5, 12(in Chinese)

    Kümmerer K. Antibiotics in the aquatic environment:A review-part I[J]. Chemosphere, 2009, 75(4):417-434
    Liu L, Chen S R, Xu K Q, et al. Influence of hydraulic loading rate on antibiotics removal and antibiotic resistance expression in soil layer of constructed wetlands[J]. Chemosphere, 2021, 265:129100
    Boxall A B, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2):19-28
    宋现财. 四环素类抗生素在活性污泥上的吸附规律及其机理研究[D]. 天津:南开大学, 2014:95-106 Song X C. Investigate the law of adsorption of tetracyclines on activated sludge and explore the mechanism[D]. Tianjin:Nankai University, 2014:95

    -106(in Chinese)

    陈小丽, 魏金华, 蔺中, 等. 抗生素的微生物降解研究进展[J]. 现代农业科技, 2018(16):167-168 Chen X L,Wei J H, Lin Z, et al. Advances on microbial degradation of antibiotics[J]. Modern Agricultural Science and Technology, 2018

    (16):167-168(in Chinese)

    魏晓东. 广州典型排放源废水和河流水体中抗生素的污染特征研究[D]. 北京:中国科学院大学, 2018:2 Wei X D. Contamination of antibiotics in typical emission sources and a river in Guangzhou[D]. Beijing:University of Chinese Academy of Sciences, 2018:2(in Chinese)
    陈磊, 吴赟琦, 赵志勇, 等. QuEChERS/超高效液相色谱-串联质谱法快速测定土壤中19种氟喹诺酮类抗生素残留[J]. 分析测试学报, 2019, 38(2):194-200

    Chen L, Wu Y Q, Zhao Z Y, et al. Rapid determination of 19 fluoroquinolones antibiotic residues in soil by QuEChERS/ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(2):194-200(in Chinese)

    Zhi D, Yang D X, Zheng Y X, et al. Current progress in the adsorption, transport and biodegradation of antibiotics in soil[J]. Journal of Environmental Management, 2019, 251:109598
    Turiel E, Martín-Esteban A, Tadeo J L. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J]. Analytica Chimica Acta, 2006, 562(1):30-35
    欧阳卓智. 复合污染下金属离子对抗生素氧化及光降解的影响机制[D]. 广州:华南理工大学, 2020:1-200 Ouyang Z Z. The mechanism of metal ions affecting the oxidation and photolysis of antibiotics under combined pollution[D]. Guangzhou:South China University of Technology, 2020:1

    -200(in Chinese)

    Wang Y S, Pei Z G, Shan X Q, et al. Effects of metal cations on sorption-desorption of p-nitrophenol onto wheat ash[J]. Journal of Environmental Sciences (China), 2011, 23(1):112-118
    Chen G C, Shan X Q, Pei Z G, et al. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead[J]. Journal of Hazardous Materials, 2011, 188(1-3):156-163
    Pei Z G, Shan X Q, Kong J J, et al. Coadsorption of ciprofloxacin and Cu(Ⅱ) on montmorillonite and kaolinite as affected by solution pH[J]. Environmental Science & Technology, 2010, 44(3):915-920
    Pérez Guaita D, Sayen S, Boudesocque S, et al. Copper(Ⅱ) influence on flumequine retention in soils:Macroscopic and molecular investigations[J]. Journal of Colloid and Interface Science, 2011, 357(2):453-459
    Wu D, Li H, Liao S H, et al. Co-sorption of ofloxacin and Cu(Ⅱ) in soils before and after organic matter removal[J]. The Science of the Total Environment, 2014, 481:209-216
    裴浩鹏. 不同土地利用类型土壤抗生素和耐药基因的分布特征及影响因素研究[D]. 沈阳:沈阳农业大学, 2020:42-47 Pei H P. Study on distribution characteristics and influencing factors of antibiotics and antibiotics resistance genes in different land use types[D]. Shenyang:Shenyang Agricultural University, 2020:42

    -47(in Chinese)

    荚德安. 土壤中四环素与铜的吸附行为及其影响因素研究[D]. 南京:南京林业大学, 2008:19-25 Jia D A. Study of adsorption of tetracycline and copper in soils and impact of factors on their adsorption[D]. Nanjing:Nanjing Forestry University, 2008:19

    -25(in Chinese)

    康峤, 包思琪, 王洪良, 等. 溶解性有机质-四环素-Zn共存体系中土壤对四环素和Zn的吸附作用[J]. 科学技术与工程, 2016, 16(14):69-73

    Kang Q, Bao S Q, Wang H L, et al. Adsorption of tetracycline and zine on the soil in the dissolved organic matter-tetracycline-zinc coexistence system[J]. Science Technology and Engineering, 2016, 16(14):69-73(in Chinese)

    Chen J Y, Zhu D Q, Sun C. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal[J]. Environmental Science & Technology, 2007, 41(7):2536-2541
    Liu Z F, Han Y T, Jing M, et al. Sorption and transport of sulfonamides in soils amended with wheat straw-derived biochar:Effects of water pH, coexistence copper ion, and dissolved organic matter[J]. Journal of Soils and Sediments, 2017, 17(3):771-779
    Parolo M E, Avena M J, Savini M C, et al. Adsorption and circular dichroism of tetracycline on sodium and calcium-montmorillonites[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 417:57-64
    Li Z H, Schulz L, Ackley C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges[J]. Journal of Colloid and Interface Science, 2010, 351(1):254-260
    Maszkowska J, Białk-Bielińska A, Mioduszewska K, et al. Sorption of sulfisoxazole onto soil:An insight into different influencing factors[J]. Environmental Science and Pollution Research International, 2015, 22(16):12182-12189
    Fernández A M L, Rendueles M, Díaz M. Competitive retention of sulfamethoxazole (SMX) and sulfamethazine (SMZ) from synthetic solutions in a strong anionic ion exchange resin[J]. Solvent Extraction and Ion Exchange, 2014, 32(7):763-781
    Heo J, Yoon Y, Lee G, et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite[J]. Bioresource Technology, 2019, 281:179-187
    Park J Y, Huwe B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils[J]. Environmental Pollution, 2016, 213:561-570
    Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4):558-564
    Kłosińska-Szmurło E, Pluciński F A, Grudzień M, et al. Experimental and theoretical studies on the molecular properties of ciprofloxacin, norfloxacin, pefloxacin, sparfloxacin, and gatifloxacin in determining bioavailability[J]. Journal of Biological Physics, 2014, 40(4):335-345
    Langlois M H, Montagut M, Dubost J P, et al. Protonation equilibrium and lipophilicity of moxifloxacin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37(2):389-393
    Völgyi G, Vizserálek G, Takács-Novák K, et al. Predicting the exposure and antibacterial activity of fluoroquinolones based on physicochemical properties[J]. European Journal of Pharmaceutical Sciences:Official Journal of the European Federation for Pharmaceutical Sciences, 2012, 47(1):21-27
    Riaz L, Mahmood T, Khalid A, et al. Fluoroquinolones (FQs) in the environment:A review on their abundance, sorption and toxicity in soil[J]. Chemosphere, 2018, 191:704-720
    康楚璠. 功能化金属——有机骨架材料对废水中金属离子及药物的吸附性能研究[D]. 北京:北京化工大学, 2018:48-51 Kang C F. Studies on adsorption performance of functionalized metal-organic frameworks for metal ions and pharmaceuticals from wastewater[D]. Beijing:Beijing University of Chemical Technology, 2018:48

    -51(in Chinese)

    Li Z Q, Qi M Y, Tu C Y, et al. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite:Properties and mechanism[J]. Applied Surface Science, 2017, 425:765-775
    徐胜楠. 碳化氮分子印迹荧光探针的制备及其在食品中的分析应用[D]. 哈尔滨:东北林业大学, 2019:1-58 Xu S N. Preparation of carbon nitride molecularly imprinted fluorescent probe and its analytical application in food[D]. Harbin:Northeast Forestry University, 2019:1

    -58(in Chinese)

    Brigante M, Parolo M E, Schulz P C, et al. Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties[J]. Powder Technology, 2014, 253:178-186
    张莹莹. 磁性铝基MOF复合材料的制备及其对四环素类抗生素吸附性能研究[D]. 广州:华南理工大学, 2020:6-7 Zhang Y Y. Synthesis of magnetic aluminum-based metal organic frameworks and their adsorption performance for tetracyclines[D]. Guangzhou:South China University of Technology, 2020:6

    -7(in Chinese)

    Huber M M, Canonica S, Park G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J]. Environmental Science & Technology, 2003, 37(5):1016-1024
    Spisso B F, Ferreira R G, Pereira M U, et al. Simultaneous determination of polyether ionophores, macrolides and lincosamides in hen eggs by liquid chromatography-electrospray ionization tandem mass spectrometry using a simple solvent extraction[J]. Analytica Chimica Acta, 2010, 682(1-2):82-92
    李欣玥. 腐殖酸促进磺胺甲恶唑厌氧生物降解特性及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2020:7-8 Li X Y. Humic acid promotes anaerobic biodegradation and mechanism of sulfamethoxazole[D]. Harbin:Harbin Institute of Technology, 2020:7

    -8(in Chinese)

    Spielmeyer A, Breier B, Groißmeier K, et al. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation[J]. Bioresource Technology, 2015, 193:307-314
    Bethke C M, Sanford R A, Kirk M F, et al. The thermodynamic ladder in geomicrobiology[J]. American Journal of Science, 2011, 311(3):183-210
    Flynn T M, O'Loughlin E J, Mishra B, et al. Sulfur-mediated electron shuttling during bacterial iron reduction[J]. Science, 2014, 344(6187):1039-1042
    Cetecioglu Z, Ince B, Orhon D, et al. Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis[J]. Water Research, 2016, 90:79-89
    Nödler K, Licha T, Fischer S, et al. A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany)[J]. Applied Geochemistry, 2011, 26(12):2172-2180
    Mohatt J L, Hu L H, Finneran K T, et al. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions[J]. Environmental Science & Technology, 2011, 45(11):4793-4801
    Oliveira G H D, Santos-Neto A J, Zaiat M. Removal of the veterinary antimicrobial sulfamethazine in a horizontal flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate[J]. Journal of Environmental Management, 2017, 204:674-683
    Jia Y Y, Khanal S K, Zhang H Q, et al. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system[J]. Water Research, 2017, 119:12-20
    Cetecioglu Z, Ince B, Gros M, et al. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater[J]. The Science of the Total Environment, 2015, 536:667-674
    薛向东, 杨宸豪, 于荐麟, 等. 圩区河道底泥腐殖酸对重金属和抗生素的共吸附[J]. 环境科学, 2021, 42(6):2856-2867

    Xue X D, Yang C H, Yu J L, et al. Coadsorption of heavy metal and antibiotic onto humic acid from polder river sediment[J]. Environmental Science, 2021, 42(6):2856-2867(in Chinese)

    Ahmed A A, Thiele-Bruhn S, Leinweber P, et al. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction[J]. The Science of the Total Environment, 2016, 559:347-355
    Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933
    Zielezny Y, Groeneweg J, Vereecken H, et al. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity[J]. Soil Biology and Biochemistry, 2006, 38(8):2372-2380
    董珮瑶, 裘文慧, 郑春苗. 土壤地下水中的抗生素迁移研究进展[C]//中国环境科学学会. 2020中国环境科学学会科学技术年会论文集(第三卷). 南京:中国环境科学学会, 2020:589-602
    Huang T, Xu Y, Zeng J, et al. Low-concentration ciprofloxacin selects plasmid-mediated quinolone resistance encoding genes and affects bacterial taxa in soil containing manure[J]. Frontiers in Microbiology, 2016, 7:1730
    Wu L, Pan X, Chen L K, et al. Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in East China[J]. Environmental Science and Pollution Research International, 2013, 20(12):8342-8354
    罗彬. 多种碳质材料对磺胺类抗生素的吸附特性与机理研究[D]. 北京:华北电力大学(北京), 2017:2-3 Luo B. Adsorption characteristics and mechanisms of sulfonamides antibiotics on carbonaceous materials[D]. Beijing:North China Electric Power University, 2017:2-3(in Chinese)
    林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展[J]. 环境化学, 2021, 40(5):1305-1318

    Lin A Q, Cheng H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes[J]. Environmental Chemistry, 2021, 40(5):1305-1318(in Chinese)

    郑璇, 张晓岭, 李莉. 同位素内标-超高效液相色谱-串联质谱法测定城镇污水处理厂废水中5种四环素类抗生素[J]. 环境保护与循环经济, 2019, 39(9):65-69
    史刚. 氨曲南主环合成工艺研究[D]. 济南:济南大学, 2013:1-3 Shi G. Study on the synthetic method of (2R, 3

    S)-3-amino-2-methyl-4-oxo-1-azetidinesulfonic acid[D]. Jinan:University of Jinan, 2013:1-3(in Chinese)

    Gu C, Karthikeyan K G, Sibley S D, et al. Complexation of the antibiotic tetracycline with humic acid[J]. Chemosphere, 2007, 66(8):1494-1501
    Wang S L, Wang H. Adsorption behavior of antibiotic in soil environment:A critical review[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4):565-574
    Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
  • 加载中
计量
  • 文章访问数:  6723
  • HTML全文浏览数:  6723
  • PDF下载数:  271
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-17
卫承芳, 李佳乐, 孙占学, 董一慧, 向令, 周永康, 向行. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
引用本文: 卫承芳, 李佳乐, 孙占学, 董一慧, 向令, 周永康, 向行. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
Wei Chengfang, Li Jiale, Sun Zhanxue, Dong Yihui, Xiang Ling, Zhou Yongkang, Xiang Xing. Research Progress of Antibiotic Pollution and Adsorption Behavior in Water-Soil Environment[J]. Asian journal of ecotoxicology, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002
Citation: Wei Chengfang, Li Jiale, Sun Zhanxue, Dong Yihui, Xiang Ling, Zhou Yongkang, Xiang Xing. Research Progress of Antibiotic Pollution and Adsorption Behavior in Water-Soil Environment[J]. Asian journal of ecotoxicology, 2022, 17(3): 385-399. doi: 10.7524/AJE.1673-5897.20210917002

水-土壤环境中抗生素污染现状及吸附行为研究进展

    通讯作者: 李佳乐, E-mail: lijiale39@126.com
    作者简介: 卫承芳(1996—),女,硕士研究生,研究方向为环境有机污染,E-mail:1419612048@qq.com
  • 1. 东华理工大学核资源与环境国家重点实验室, 南昌 330013;
  • 2. 东华理工大学水资源与环境工程学院, 南昌 330013
基金项目:

国家自然科学基金委员会与金砖国家科技创新框架计划合作研究项目(51861145308);江西省青年科学基金资助项目(20202BAB213015);江西省教育厅科学技术研究项目(GJJ200769)

摘要: 近年来,在水-土壤环境中频繁检测出的抗生素,对人类健康和生态系统已产生不容忽视的风险。其中,在环境中常被检测到的磺胺类(sulfonamides,SAs)、四环素类(tetracyclines,TCs)、大环内酯类(macrolides,MLs)和氟喹诺酮类(fluoroquinolones,FQs)抗生素在畜牧养殖以及临床医疗广泛应用。本文从3个方向进行了综述:(1)抗生素在水-土壤环境中的分布现状,包括抗生素的来源、使用现状及在水环境、土壤环境中的污染现状,并对比四大类典型抗生素在不同地区环境介质中的污染情况;(2)分析抗生素在水-土壤环境中的吸附行为,探究金属离子、pH、有机质及分子结构对抗生素吸附行为的影响;(3)对水-土壤环境中抗生素研究的重点方向进行展望。磺胺类具有良好的化学稳定性和环境迁移能力,在水环境和土壤环境中的残留水平都较高且在水环境中更容易残留。四环素类具有良好的水溶性、光解特性以及较高的辛醇-水分配系数(Kow),容易被沉积物或土壤吸附。氟喹诺酮类自身性质稳定,半衰期长,比其他类抗生素具有更强的土壤蓄积能力和持久性,在水环境中频繁被检出。大环内酯类在水环境中不仅具有较高的生物可降解性,并且由于其衰减速率较高,使得此类物质在被吸附到沉积物中之后很难迁移到深层沉积物中。

English Abstract

参考文献 (111)

返回顶部

目录

/

返回文章
返回