纳米材料对微藻的生态毒性效应及机理

纪丽鹏, 王月, 褚福浩, 黄一, 鲁浩, 朱亮, 徐向阳, 李家科, 莫淑红, 孔赟. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
引用本文: 纪丽鹏, 王月, 褚福浩, 黄一, 鲁浩, 朱亮, 徐向阳, 李家科, 莫淑红, 孔赟. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
Ji Lipeng, Wang Yue, Chu Fuhao, Huang Yi, Lu Hao, Zhu Liang, Xu Xiangyang, Li Jiake, Mo Shuhong, Kong Yun. Ecological Effects and Toxic Mechanisms of Nanomaterials to Microalgae[J]. Asian journal of ecotoxicology, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
Citation: Ji Lipeng, Wang Yue, Chu Fuhao, Huang Yi, Lu Hao, Zhu Liang, Xu Xiangyang, Li Jiake, Mo Shuhong, Kong Yun. Ecological Effects and Toxic Mechanisms of Nanomaterials to Microalgae[J]. Asian journal of ecotoxicology, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001

纳米材料对微藻的生态毒性效应及机理

    作者简介: 纪丽鹏(1998-),女,硕士研究生,研究方向为环境微生物,E-mail:1741019474@qq.com
    通讯作者: 孔赟, E-mail: ky020241@hotmail.com
  • 基金项目:

    省部共建西北旱区生态水利国家重点实验室(西安理工大学)开放研究基金项目(2021KFKT-8);江苏省自然科学基金项目(BK20150165);中国博士后科学基金项目(2016M591832);浙江省水体污染控制与环境安全技术重点实验室开放基金项目(2018ZJSHKF06)

  • 中图分类号: X171.5

Ecological Effects and Toxic Mechanisms of Nanomaterials to Microalgae

    Corresponding author: Kong Yun, ky020241@hotmail.com
  • Fund Project:
  • 摘要: 纳米材料因具有界面效应、尺寸效应和隧道效应等特点被广泛应用于污染环境修复领域,但在修复污染物的同时残存于环境中的纳米材料可以通过诸多途径进入水体,且与微生物、浮游微藻和有机质等相互作用后可能导致生态平衡被破坏,其对生态环境的影响和潜在威胁不容忽视。本文总结了常见纳米材料及其与有机物、重金属等的联合作用对微藻的生态毒性,在此基础上分析了颗粒粒径、颗粒浓度及环境因素等对纳米材料毒性的影响,探讨了纳米材料对微藻的致毒机理,并对今后的研究方向进行了展望,以期为纳米材料环境毒理学领域的研究提供参考和借鉴。
  • 加载中
  • Khin M M, Nair A S, Babu V J, et al. A review on nanomaterials for environmental remediation[J]. Energy & Environmental Science, 2012, 5(8):8075-8109
    Madima N, Mishra S B, Inamuddin I, et al. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater[J]. Environmental Chemistry Letters, 2020, 18(4):1169-1191
    Xue L L, Lu B Z, Wu Z S, et al. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants[J]. Chemical Engineering Journal, 2014, 243:494-499
    Burchardt A D, Carvalho R N, Valente A, et al. Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp.[J]. Environmental Science & Technology, 2012, 46(20):11336-11344
    Iswarya V, Manivannan J, De A, et al. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels[J]. Environmental Science and Pollution Research, 2016, 23(5):4844-4858
    李芳芳, 潘容, 张偲, 等. 纳米铜粉对中肋骨条藻的毒性效应[J]. 中国环境科学, 2015, 35(9):2874-2880

    Li F F, Pan R, Zhang C, et al. Inhibition effects of copper nanoparticles on the growth of Skeletonema costatum[J]. China Environmental Science, 2015, 35(9):2874-2880(in Chinese)

    丛艺, 穆景利, 王菊英. 纳米材料在水环境中的行为及其对水生生物的毒性效应[J]. 海洋湖沼通报, 2014(3):112-120 Cong Y, Mu J L, Wang J Y. Behavior and toxicity of nanomaterials in aquatic environment[J]. Transactions of Oceanology and Limnology, 2014

    (3):112-120(in Chinese)

    Markus A A, Parsons J R, Roex E W M, et al. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse[J]. Science of the Total Environment, 2013, 456-457:154-160
    Marsalek B, Jancula D, Marsalkova E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria[J]. Environmental Science & Technology, 2012, 46(4):2316-2323
    Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45(14):6032-6040
    汪苹, 孙志强, 王宇涛, 等. 纳米ZnO对微藻的毒性效应和生物富集的研究[J]. 环境科学与技术, 2018, 41(12):13-19

    Wang P, Sun Z Q, Wang Y T, et al. Toxicity and bioaccumulation of zinc oxide nanoparticles by microalgaes[J]. Environmental Science & Technology, 2018, 41(12):13-19(in Chinese)

    He X X, Xie C J, Ma Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 209:113-120
    Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13
    Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
    Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids[J]. Environmental Science and Pollution Research International, 2006, 13(4):225-232
    梁长华. 纳米NiO对小球藻的生物毒性及致毒机制研究[D]. 大连:大连海事大学, 2010:27 Liang C H. Research on biotoxicity and toxic mechanism of NiO nanoparticles on Chlorella vulgaris [D]. Dalian:Dalian Maritime University, 2010:27(in Chinese)
    Blaise C, Gagné F, Férard J F, et al. Ecotoxicity of selected nano-materials to aquatic organisms[J]. Environmental Toxicology, 2008, 23(5):591-598
    Kwok K W H, Leung K M Y, Flahaut E, et al. Chronic toxicity of double-walled carbon nanotubes to three marine organisms:Influence of different dispersion methods[J]. Nanomedicine, 2010, 5(6):951-961
    Lang J, Melnykova M, Catania M, et al. A water-soluble
    fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii[J]. Acta Biochimica Polonica, 2019, 66(3):257-262
    Schwab F, Bucheli T D, Lukhele L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration?[J]. Environmental Science & Technology, 2011, 45(14):6136-6144
    Wei L P, Thakkar M, Chen Y H, et al. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta[J]. Aquatic Toxicology, 2010, 100(2):194-201
    彭晓玲, 孟范平, 张倩, 等. 氧化石墨烯对淡水微藻生长及生物活性物质的影响[J]. 中国环境科学, 2019, 39(11):4849-4857

    Peng X L, Meng F P, Zhang Q, et al. Effects of graphene oxide on the growth and bioactive compounds in freshwater microalgae[J]. China Environmental Science, 2019, 39(11):4849-4857(in Chinese)

    朱小山, 朱琳, 田胜艳, 等. 三种碳纳米材料对水生生物的毒性效应[J]. 中国环境科学, 2008, 28(3):269-273

    Zhu X S, Zhu L, Tian S Y, et al. Toxicity effect of three kinds of carbon nanomaterials on aquatic organisms[J]. China Environmental Science, 2008, 28(3):269-273(in Chinese)

    Wang J X, Zhang X Z, Chen Y S, et al. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2008, 73(7):1121-1128
    Qian H F, Zhu K, Lu H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris:New insights from proteomic and physiological analyses[J]. Science of the Total Environment, 2016, 572:1213-1221
    Yin J Y, Dong Z M, Liu Y Y, et al. Toxicity of reduced graphene oxide modified by metals in microalgae:Effect of the surface properties of algal cells and nanomaterials[J]. Carbon, 2020, 169:182-192
    Aravantinou A F, Tsarpali V, Dailianis S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae[J]. Ecotoxicology and Environmental Safety, 2015, 114:109-116
    Roy R, Parashar A, Bhuvaneshwari M, et al. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae:Chlorella and Scenedesmus species[J]. Aquatic Toxicology, 2016, 176:161-171
    Oukarroum A, Bras S, Perreault F, et al. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Ecotoxicology and Environmental Safety, 2012, 78:80-85
    Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii:Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis[J]. Environmental Science and Pollution Research International, 2021, 28(12):15032-15042
    Zhang C, Wang J T, Tan L J, et al. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum:Attention to the accumulation of intracellular Zn[J]. Aquatic Toxicology, 2016, 178:158-164
    Behra R, Wagner B, Sgier L, et al. Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii[J]. Aquatic Geochemistry, 2015, 21(2):331-342
    Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii[J]. Environmental Science & Technology, 2008, 42(23):8959-8964
    Pillai S, Behra R, Nestler H, et al. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9):3490-3495
    Nguyen N H A, von Moos N R, Slaveykova V I, et al. Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp.[J]. Ecotoxicology and Environmental Safety, 2018, 154:36-44
    Velzeboer I, Hendriks A J, Ragas A M J, et al. Aquatic ecotoxicity tests of some nanomaterials[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1942-1947
    Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms[J]. Toxicological Sciences, 2010, 119(1):135-145
    廖兴盛, 王一翔, 陈佐泓, 等. 纳米二氧化钛(nTiO2)对三角褐指藻(Phaeodactylum tricornutum)光合系统的影响[J]. 生态环境学报, 2020, 29(4):778-785

    Liao X S, Wang Y X, Chen Z H, et al. Effects of nano-titanium dioxide on photosystem of Phaeodactylum tricornutum[J]. Ecology and Environmental Sciences, 2020, 29(4):778-785(in Chinese)

    Hou J, Yang Y Y, Wang P F, et al. Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances[J]. Environmental Science and Pollution Research International, 2017, 24(1):226-235
    朱小山, 朱琳, 田胜艳, 等. 三种金属氧化物纳米颗粒的水生态毒性[J]. 生态学报, 2008, 28(8):3507-3516

    Zhu X S, Zhu L, Tian S Y, et al. Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions[J]. Acta Ecologica Sinica, 2008, 28(8):3507-3516(in Chinese)

    Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. The Science of the Total Environment, 2009, 407(4):1461-1468
    于叶. 水介质中C60纳米颗粒对藻类的作用效应研究[D]. 上海:上海交通大学, 2016:52-53 Yu Y. Effects of C60 nanocrystallines on algae in aqueous system[D]. Shanghai:Shanghai Jiao Tong University, 2016

    :52-53(in Chinese)

    Wahid M H, Eroglu E, Chen X J, et al. Entrapment of Chlorella vulgaris cells within graphene oxide layers[J]. RSC Advances, 2013, 3(22):8180-8183
    Nogueira P F M, Nakabayashi D, Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J]. Aquatic Toxicology, 2015, 166:29-35
    Zhao J, Cao X S, Wang Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111:18-27
    Zhang S J, Jiang Y L, Chen C S, et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots[J]. Aquatic Toxicology, 2013, 126:214-223
    Morelli E, Salvadori E, Bizzarri R, et al. Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta:A biophysical approach[J]. Biophysical Chemistry, 2013, 182:4-10
    Lin S J, Bhattacharya P, Rajapakse N C, et al. Effects of quantum dots adsorption on algal photosynthesis[J]. The Journal of Physical Chemistry C, 2009, 113(25):10962-10966
    张盼红, 庞成芳, 赵斌. 纳米材料对底栖动物的毒性效应研究进展[J]. 生态毒理学报, 2020, 15(4):66-78

    Zhang P H, Pang C F, Zhao B. Review on the ecotoxicity of manufactured nanomaterials to the benthic invertebrates[J]. Asian Journal of Ecotoxicology, 2020, 15(4):66-78(in Chinese)

    Lamelas C, Slaveykova V I. Comparison of Cd(Ⅱ), Cu(Ⅱ), and Pb(Ⅱ) biouptake by green algae in the presence of humic acid[J]. Environmental Science & Technology, 2007, 41(11):4172-4178
    Wang Z, Wang S, Peijnenburg W J G M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13
    Baun A, Sørensen S N, Rasmussen R F, et al.Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60[J]. Aquatic Toxicology, 2008, 86(3):379-387
    Gunasekaran D, Chandrasekaran N, Jenkins D, et al. Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104250
    Hall S, Bradley T, Moore J T, et al. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity[J]. Nanotoxicology, 2009, 3(2):91-97
    Xie B, Xu Z H, Guo W H, et al. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42(8):2853-2859
    Verneuil L, Silvestre J, Mouchet F, et al. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea:"a sticky story"[J]. Nanotoxicology, 2015, 9(2):219-229
    Tang Y L, Li S Y, Lu Y, et al. The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp.[J]. Environmental Toxicology, 2015, 30(8):895-903
    Neale P A, Jamting à K, O'Malley E, et al. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity[J]. Environmental Science:Nano, 2015, 2(1):86-93
    Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
    Tang Y L, Tian J L, Li S Y, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa[J]. Science of the Total Environment, 2015, 532:154-161
    章哲超, 胡佶, 刘淑霞, 等. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4):661-669

    Zhang Z C, Hu J, Liu S X, et al. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4):661-669(in Chinese)

    辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响[J]. 生态毒理学报, 2013, 8(1):23-28

    Xin Y Y, Chen J Y, Cheng Y H, et al. Biological effects of nano-TiO2 and heavy metal Cd on M. aeruginosa[J]. Asian Journal of Ecotoxicology, 2013, 8(1):23-28(in Chinese)

    Chen J Y, Qian Y, Li H R, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2015, 22(16):12407-12414
    Hu C W, Hu N T, Li X L, et al. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2016, 132:360-365
    Dalai S, Pakrashi S, Bhuvaneshwari M, et al. Toxic effect of Cr(Ⅵ) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae[J]. Aquatic Toxicology, 2014, 146:28-37
    Saison C, Perreault F, Daigle J C, et al. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystemⅡ energy distribution) in the green alga, Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2010, 96(2):109-114
    Schiavo S, Duroudier N, Bilbao E, et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae[J]. Science of the Total Environment, 2017, 577:45-53
    Fan J J, Hu Y B, Li X Y. Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of cyanobacteria from water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15135-15142
    Adeleye A S, Stevenson L M, Su Y M, et al. Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles[J]. Environmental Science & Technology, 2016, 50(11):5597-5605
    吉喜燕, 唐静懿, 叶璟, 等. 碳基纳米铜复合材料对普通小球藻胁迫作用的研究[J]. 生态环境学报, 2021, 30(3):578-585

    Ji X Y, Tang J Y, Ye J, et al. Stressed effects of C-Cu2O nanoparticles on Chlorella vulgaris[J]. Ecology and Environmental Sciences, 2021, 30(3):578-585(in Chinese)

    Wang M S, Li H B, Li Y H, et al. Dispersibility and size control of silver nanoparticles with anti-algal potential based on coupling effects of polyvinylpyrrolidone and sodium tripolyphosphate[J]. Nanomaterials, 2020, 10(6):1042
    Khoshnamvand M, Hao Z N, Fadare O O, et al. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels[J]. Chemosphere, 2020, 258:127346
    Hartmann N B, von der Kammer F, Hofmann T, et al. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability[J]. Toxicology, 2010, 269(2-3):190-197
    Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7):e102108
    Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
    Samei M, Sarrafzadeh M H, Faramarzi M A. The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata[J]. Environmental Science and Pollution Research, 2019, 26(3):2409-2420
    Chae Y, An Y J. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish[J]. Aquatic Toxicology, 2016, 173:94-104
    Van Hoecke K, Quik J T K, Mankiewicz-Boczek J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12):4537-4546
    李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127

    Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)

    Manier N, Bado-Nilles A, Delalain P, et al. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae[J]. Environmental Pollution, 2013, 180:63-70
    王应军, 李娜, 罗潇宇, 等. 多壁碳纳米管对铜绿微囊藻生长及生理特征的影响[J]. 生态毒理学报, 2018, 13(6):316-325

    Wang Y J, Li N, Luo X Y, et al. Effects of multi-walled carbon nanotubes on the growth and physiology of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6):316-325(in Chinese)

    van Hoecke K, de Schamphelaere K A C, Ramirez-Garcia S, et al. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents[J]. Environment International, 2011, 37(6):1118-1125
    Röhder L A, Brandt T, Sigg L, et al. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(Ⅲ) on short term effects to the green algae Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 152:121-130
    Sørensen S N, Baun A. Controlling silver nanoparticle exposure in algal toxicity testing:A matter of timing[J]. Nanotoxicology, 2015, 9(2):201-209
    Schiavo S, Oliviero M, Miglietta M, et al. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels[J]. The Science of the Total Environment, 2016, 550:619-627
    Zhang J X, Jiang L J, Wu D, et al. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO2 nanoparticles stress[J]. Science of the Total Environment, 2020, 734:139443
    Adeleye A S, Conway J R, Perez T, et al. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 2014, 48(21):12561-12568
    Ghazaei F, Shariati M. Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta[J]. Protoplasma, 2020, 257(1):75-88
    陈晓华, 张偲, 谭丽菊, 等. 人工纳米材料对海洋微藻的毒性研究进展[J]. 海洋科学, 2017, 41(6):134-143

    Chen X H, Zhang C, Tan L J, et al. Research progress in toxicity of nanomaterials manufactured on microalgae[J]. Marine Sciences, 2017, 41(6):134-143(in Chinese)

    王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418

    Wang Z Y, Zhao J, Li N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418(in Chinese)

    Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility[J]. Environmental Science & Technology, 2007, 41(24):8484-8490
    Pakrashi S, Dalai S, T C P, et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations[J]. Aquatic Toxicology, 2013, 132-133:34-45
    Miao A J, Schwehr K A, Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances[J]. Environmental Pollution, 2009, 157(11):3034-3041
    花文凤, 王大力, 高雅, 等. 纳米金属氧化物对羊角月牙藻的毒性研究[J]. 安全与环境学报, 2014, 14(4):307-311

    Hua W F, Wang D L, Gao Y, et al. Effect of the typical metal oxide nanoparticles on the toxicity of the Selenastrum capricornutum[J]. Journal of Safety and Environment, 2014, 14(4):307-311(in Chinese)

    Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the greenalga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
    Peng X H, Palma S, Fisher N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae[J]. Aquatic Toxicology, 2011, 102(3-4):186-196
    吴明珠, 何梅琳, 邹山梅, 等. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267

    Wu M Z, He M L, Zou S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese)

    Van Hoecke K, De Schamphelaere K A C, Van der Meeren P, et al. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata:Importance of surface area[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1948-1957
    Gong N, Shao K S, Che C, et al. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris[J]. Marine Pollution Bulletin, 2019, 149:110532
  • 加载中
计量
  • 文章访问数:  3508
  • HTML全文浏览数:  3508
  • PDF下载数:  164
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-13
纪丽鹏, 王月, 褚福浩, 黄一, 鲁浩, 朱亮, 徐向阳, 李家科, 莫淑红, 孔赟. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
引用本文: 纪丽鹏, 王月, 褚福浩, 黄一, 鲁浩, 朱亮, 徐向阳, 李家科, 莫淑红, 孔赟. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
Ji Lipeng, Wang Yue, Chu Fuhao, Huang Yi, Lu Hao, Zhu Liang, Xu Xiangyang, Li Jiake, Mo Shuhong, Kong Yun. Ecological Effects and Toxic Mechanisms of Nanomaterials to Microalgae[J]. Asian journal of ecotoxicology, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001
Citation: Ji Lipeng, Wang Yue, Chu Fuhao, Huang Yi, Lu Hao, Zhu Liang, Xu Xiangyang, Li Jiake, Mo Shuhong, Kong Yun. Ecological Effects and Toxic Mechanisms of Nanomaterials to Microalgae[J]. Asian journal of ecotoxicology, 2022, 17(5): 175-189. doi: 10.7524/AJE.1673-5897.20210913001

纳米材料对微藻的生态毒性效应及机理

    通讯作者: 孔赟, E-mail: ky020241@hotmail.com
    作者简介: 纪丽鹏(1998-),女,硕士研究生,研究方向为环境微生物,E-mail:1741019474@qq.com
  • 1. 长江大学资源与环境学院, 武汉 430100;
  • 2. 浙江大学环境工程系, 杭州 310058;
  • 3. 浙江省水体污染控制与环境安全技术重点实验室, 杭州 310058;
  • 4. 西安理工大学省部共建西北旱区生态水利国家重点实验室, 西安 710048;
  • 5. 南京大学宜兴环保研究院, 宜兴 214205
基金项目:

省部共建西北旱区生态水利国家重点实验室(西安理工大学)开放研究基金项目(2021KFKT-8);江苏省自然科学基金项目(BK20150165);中国博士后科学基金项目(2016M591832);浙江省水体污染控制与环境安全技术重点实验室开放基金项目(2018ZJSHKF06)

摘要: 纳米材料因具有界面效应、尺寸效应和隧道效应等特点被广泛应用于污染环境修复领域,但在修复污染物的同时残存于环境中的纳米材料可以通过诸多途径进入水体,且与微生物、浮游微藻和有机质等相互作用后可能导致生态平衡被破坏,其对生态环境的影响和潜在威胁不容忽视。本文总结了常见纳米材料及其与有机物、重金属等的联合作用对微藻的生态毒性,在此基础上分析了颗粒粒径、颗粒浓度及环境因素等对纳米材料毒性的影响,探讨了纳米材料对微藻的致毒机理,并对今后的研究方向进行了展望,以期为纳米材料环境毒理学领域的研究提供参考和借鉴。

English Abstract

参考文献 (100)

返回顶部

目录

/

返回文章
返回