辣椒素对蔬菜中氟生物可给性影响的离体实验研究
Effect of Capsaicin on Bioaccessibility of Fluorine in Vegetables: An in vitro Study
-
摘要: 蔬菜中氟的生物可给性是评价其健康风险的重要参数。在我国很多地区,人们习惯将辣椒作为调料与蔬菜同时食用。辣椒中的辣椒素具有强烈的刺激性和独特的理化性质,是否会对蔬菜中氟的生物可给性产生影响及影响程度如何,目前还鲜有报道。笔者探究蔬菜中氟的生物可给性和辣椒素对蔬菜中氟生物可给性的影响及可能原因。样品来源于贵阳市白云区废旧铝厂周围农田,共10种。选择生理原理消化法(physiologically based extraction test,PBET)进行体外消化,比较对照组(无辣椒素)和辣椒素处理组(辣椒素90、140和210 mg·L-1)氟的生物可给性。分别测定样品消化液中的F-、Ca2+、Mg2+和pH。蔬菜样品中氟(1.96±0.59) mg·kg-1普遍超过我国限值标准(1.0 mg·kg-1);蔬菜中氟的生物可给性呈现胃阶段(44.08%)大于肠阶段(23.64%)的现象;对照组蔬菜中胃阶段氟的生物可给性(44.08%)小于辣椒素处理组(64.08%)(P<0.05);在胃阶段,辣椒素处理组消化液pH平均值为4.93,略低于对照组pH 5.25(P<0.05);蔬菜消化液中,对照组Ca2+含量为(64 729.18±44 623.83) mg·kg-1,高于辣椒素处理组的(55 382.82±39 579.44) mg·kg-1,而消化液中Mg2+含量对照组(2 893.56±679.40) mg·kg-1则低于辣椒素处理组(3 246.93±792.26) mg·kg-1(P<0.05)。蔬菜中氟的消化溶解主要在胃阶段,其生物可给性受到辣椒素的影响,辣椒素可使胃阶段蔬菜中氟的生物可给性升高;辣椒素使胃阶段消化液的pH发生变化,从而导致F-与Ca2+、Mg2+的结合改变,是蔬菜中氟的生物可给性改变的可能原因,这为氟的人体健康风险评价研究的完善和发展提供理论依据。Abstract: The bioaccessibility of fluorine in vegetables is an important parameter on its health risk. In many areas of China, pepper is used both as seasoning and vegetables. Capsaicin in pepper has strong irritation and unique physical and chemical properties. Up to now, there are few of knowledge on effect of capsaicin on the bioaccessibility of fluorine in vegetables. The aim of this study is to explore the effect of capsaicin on the bioaccessibility of fluorine in vegetables. 10 kinds of vegetables were collected from the farmland around the waste aluminum plant in Baiyun District, Guiyang. Physiologically based extraction test (PBET) was designed for in vitro digestion. The bioaccessibility of control group (no capsaicin) and capsaicin treatment group (capsaicin 90, 140 and 210 mg·L-1) was compared. F-, Ca2+, Mg2+ and pH in sample digestive juice were determined by fluorine ion selective electrode, atomic absorption spectrometer and laboratory acidity meter respectively. Fluoride (1.96±0.59) mg·kg-1 in vegetable samples generally exceeded the limit standard of China (1.0 mg·kg-1). The bioaccessibility of fluorine in vegetables showed that the gastric stage (44.08%) was greater than the intestinal stage (23.64%). The bioaccessibility of fluoride in the control group (44.08%) was lower than that in the capsaicin treatment group (64.08%) (P<0.05). In the gastric stage, the pH value of digestive juice in capsaicin treatment group was 4.93, which was slightly lower than that in control group (pH=5.25) (P<0.05). The content of Ca2+ in vegetable digestive juice in the control group (64 729.18±44 623.83) mg·kg-1 was higher than that in capsaicin treatment group (55 382.82±39 579.44) mg·kg-1, while the content of Mg2+ in digestive juice in the control group (2 893.56±679.40) mg·kg-1 was lower than that in capsaicin treatment group (3 246.93±792.26) mg·kg-1(P<0.05). The fluorine in vegetables are digested and released mainly in the gastric stage. The bioaccessibility of fluorine in vegetables will increase when capsaicin is added in the gastric stage. The capsaicin can change the pH value of digestive juice at the gastric stage, which break the combination of F- with Ca2+ and Mg2+. This finding can provide a theoretical basis for the improvement and development of human health risk assessment of fluorine.
-
Key words:
- fluorine /
- capsaicin /
- vegetables /
- bioaccessibility
-
-
Sahu B L, Banjare G R, Ramteke S, et al. Fluoride contamination of groundwater and toxicities in Dongargaon Block, Chhattisgarh, India[J]. Exposure and Health, 2017, 9(2):143-156 Mullenix P J, Denbesten P K, Schunior A, et al. Neurotoxicity of sodium fluoride in rats[J]. Neurotoxicology and Teratology, 1995, 17(2):169-177 Dimcevici Poesina N, Bllu C, Nimigean V R, et al. Histopathological changes of renal tissue following sodium fluoride administration in two consecutive generations of mice. Correlation with the urinary elimination of fluoride[J]. Romanian Journal of Morphology and Embryology, 2014, 55(2):343-349 Adali M K, Varol E, Aksoy F, et al. Impaired heart rate recovery in patients with endemic fluorosis[J]. Biological Trace Element Research, 2013, 152(3):310-315 Hosur M B, Puranik R S, Vanaki S, et al. Study of thyroid hormones free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) in subjects with dental fluorosis[J]. European Journal of Dentistry, 2012, 6(2):184-190 Messer H H, Armstrong W D, Singer L. Influence of fluoride intake on reproduction in mice[J]. The Journal of Nutrition, 1973, 103(9):1319-1326 周青龄, 兰德. 温泉型氟中毒地区环境本底高氟对农作物及人体健康的影响[J]. 南昌大学学报:工科版, 2008, 30(3):215-219 Zhou Q L, Lan D. Influence of high fluorine background on the crops and humans in hotspring-induced fluorosis areas[J]. Journal of Nanchang University:Engineering & Technology, 2008, 30(3):215-219(in Chinese)
蓝天水, 张亚平, 蓝永贵, 等. 高氟环境对农作物含氟量的影响[J]. 海峡预防医学杂志, 1996(1):22-24 余悦虎, 陶建明, 潘金德, 等. 浙中氟石矿地区耕地土壤-农作物中氟含量分析研究[J]. 农学学报, 2013, 3(5):22-25 Yu Y H, Tao J M, Pan J D, et al. An evaluation on total fluorine contents in surface soils and crops in fluorite mining area, central Zhejiang Province[J]. Journal of Agriculture, 2013, 3(5):22-25(in Chinese)
He L L, Tu C L, He S Y, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health, 2021, 43(3):1137-1154 Chowdhury C, Khijmatgar S, Kumari D P, et al. Fluoride in fish flesh, fish bone and regular diet in south-coastal area of Karnataka state of India[J]. Indian Journal of Dental Research:Official Publication of Indian Society for Dental Research, 2018, 29(4):414-417 Cronin S J, Manoharan V, Hedley M J, et al. Fluoride:A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand[J]. New Zealand Journal of Agricultural Research, 2000, 43(3):295-321 Pickering W F. The mobility of soluble fluoride in soils[J]. Environmental Pollution Series B, Chemical and Physical, 1985, 9(4):281-308 郑宝山. 地方性氟中毒及工业氟污染研究[M]. 北京:中国环境科学出版社, 1992:38-82 Wang M, Yang J Y, He W Y, et al. Vertical distribution of fluorine in farmland soil profiles around phosphorous chemical industry factories[J]. Environmental Science and Pollution Research International, 2019, 26(1):855-866 Wang M, Li X, He W Y, et al. Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China[J]. Environmental Pollution, 2019, 249:423-433 黄开莲, 李薛燕, 王安伟, 等. 云南省鲁甸县燃煤污染型地方性氟中毒防治现况调查[J]. 中华地方病学杂志, 2019, 38(2):144-148 Huang K L, Li X Y, Wang A W, et al. An investigation on current situation of coal-burning type endemic fluorosis control and prevention in Ludian County of Yunnan Province[J]. Chinese Journal of Endemiology, 2019, 38(2):144-148(in Chinese)
中华人民共和国国家质量监督检验检疫局. 食品中污染物限量:GB 2762-2005[M]. 北京:中国标准出版社, 2005:4 Freeman G B, Johnson J D, Liao S C, et al. Absolute bioavailability of lead acetate and mining waste lead in rats[J]. Toxicology, 1994, 91(2):151-163 Freeman G B, Dill J A, Johnson J D, et al. Comparative absorption of lead from contaminated soil and lead salts by weanling Fischer 344 rats[J]. Fundamental and Applied Toxicology, 1996, 33(1):109-119 尹乃毅, 罗飞, 张震南, 等. 土壤中铜的生物可给性及其对人体的健康风险评价[J]. 生态毒理学报, 2014, 9(4):670-677 Yin N Y, Luo F, Zhang Z N, et al. Bioaccessibility of soil copper and its health risk assessment[J]. Asian Journal of Ecotoxicology, 2014, 9(4):670-677(in Chinese)
Ruby M V, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21):3697-3705 郑小曼. 叶菜类蔬菜中砷的生物有效性研究[D]. 南宁:广西大学, 2017:4-6 Zheng X M. Bioavailability of arsenic in leafy vegetables[D]. Nanning:Guangxi University, 2017:4 -6(in Chinese)
Rocha R A, de la Fuente B, Clemente M J, et al. Factors affecting the bioaccessibility of fluoride from seafood products[J]. Food and Chemical Toxicology, 2013, 59:104-110 中华人民共和国卫生部. 食品中氟的测定:GB/T 5009.18-2003[S]. 北京:中国标准出版社, 2003 Hu X, Zhang Y, Luo J, et al. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China[J]. Environmental Pollution, 2011, 159(5):1215-1221 Intawongse M, Dean J R. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract[J]. Food Additives and Contaminants, 2006, 23(1):36-48 Oomen A G, Tolls J, Sips A J A M, et al. In vitro intestinal lead uptake and transport in relation to speciation[J]. Archives of Environmental Contamination and Toxicology, 2003, 44(1):116-124 Buzalaf M A R, Whitford G M. Fluoride metabolism[J]. Monographs in Oral Science, 2011, 22:20-36 尚德荣, 赵宪勇, 宁劲松, 等. 应用体外仿生模型分析南极磷虾中氟的生物可给性及其对人体的健康风险[J]. 中国渔业质量与标准, 2014, 4(4):21-26 Shang D R, Zhao X Y, Ning J S, et al. Bioaccessibility analysis and health risk assessment of fluorine in Euphausia superba using in vitro whole-bionic model[J]. Chinese Fishery Quality and Standards, 2014, 4(4):21-26(in Chinese)
Sahuquillo A, Barberá R, Farré R. Bioaccessibility of calcium, iron and zinc from three legume samples[J]. Die Nahrung, 2003, 47(6):438-441 王文辉, 卞金有, 曹采方. 氟化牛奶中氟的生物利用率研究[J]. 中华口腔医学杂志, 2001, 36(2):116-118 Wang W H, Bian J Y, Cao C F. A study on the bioavailability of fluoride added into milk[J]. Chinese Journal of Stomatology, 2001, 36(2):116-118(in Chinese)
Trautner K, Einwag J. Influence of milk and food on fluoride bioavailability from NaF and Na2FPO3 in man[J]. Journal of Dental Research, 1989, 68(1):72-77 Shulman E R, Vallejo M. Effect of gastric contents on the bioavailability of fluoride in humans[J]. Pediatric Dentistry, 1990, 12(4):237-240 张念恒, 安冬, 李达圣, 等. 贵州省燃煤污染型氟中毒重点病区玉米和辣椒氟含量及变化[J]. 中华地方病学杂志, 2017, 36(8):580-582 Zhang N H, An D, Li D S, et al. Contents of fluoride in corn and peppers in key regions of coal-burning-borne endemic fluorosis areas in Guizhou Province[J]. Chinese Journal of Endemiology, 2017, 36(8):580-582(in Chinese)
常晓轲, 张强, 韩娅楠, 等. 不同类型辣椒中辣椒素含量测定及辣度分析[J]. 中国瓜菜, 2019, 32(9):30-33 Chang X K, Zhang Q, Han Y N, et al. Analysis and comparison of capsaicinoid contents and pungency degree in different types of pepper[J]. China Cucurbits and Vegetables, 2019, 32(9):30-33(in Chinese)
程琪琪, 葛蔚, 李敬锁, 等. 辣椒中多环芳烃的累积特征及健康风险评估[J]. 环境化学, 2018, 37(2):229-238 Cheng Q Q, Ge W, Li J S, et al. Accumulation and health risk assessment of polycyclic aromatic hydrocarbons in pepper[J]. Environmental Chemistry, 2018, 37(2):229-238(in Chinese)
苏昕峰. 辣椒素对肠道发酵环境的影响[D]. 重庆:西南大学, 2012:4-13 Su X F. Effect of capsaicin on intestinal fermtent environment[D]. Chongqing:Southwest University, 2012:4 -13(in Chinese)
Isoda H, Han J, Tominaga M, et al. Effects of capsaicin on human intestinal cell line Caco-2[J]. Cytotechnology, 2001, 36(1-3):155-161 Dressman J B, Berardi R R, Dermentzoglou L C, et al. Upper gastrointestinal (GI) pH in young, healthy men and women[J]. Pharmaceutical Research, 1990, 7(7):756-761 -

计量
- 文章访问数: 1518
- HTML全文浏览数: 1518
- PDF下载数: 57
- 施引文献: 0