基于风险商法的中国典型淡水水域微塑料生态风险评价

李丹文, 姚巍, 张胜, 潘雄, 林莉, 吴晓晖. 基于风险商法的中国典型淡水水域微塑料生态风险评价[J]. 生态毒理学报, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
引用本文: 李丹文, 姚巍, 张胜, 潘雄, 林莉, 吴晓晖. 基于风险商法的中国典型淡水水域微塑料生态风险评价[J]. 生态毒理学报, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
Li Danwen, Yao Wei, Zhang Sheng, Pan Xiong, Lin Li, Wu Xiaohui. Ecological Risk Assessment of Microplastics in Typical Freshwater Waters in China Based on Method of Risk Quotient[J]. Asian journal of ecotoxicology, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
Citation: Li Danwen, Yao Wei, Zhang Sheng, Pan Xiong, Lin Li, Wu Xiaohui. Ecological Risk Assessment of Microplastics in Typical Freshwater Waters in China Based on Method of Risk Quotient[J]. Asian journal of ecotoxicology, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001

基于风险商法的中国典型淡水水域微塑料生态风险评价

    作者简介: 李丹文(1996-),女,硕士,研究方向为流域水环境保护,E-mail:m201977356@hust.edu.cn
    通讯作者: 林莉, E-mail: linli1229@hotmail.com
  • 基金项目:

    国家自然科学基金资助项目(52179057);中央级公益性科研院所基本科研业务费项目(CKSF2021480/SH);武汉市科技局项目(2020010601012285)

  • 中图分类号: X171.5

Ecological Risk Assessment of Microplastics in Typical Freshwater Waters in China Based on Method of Risk Quotient

    Corresponding author: Lin Li, linli1229@hotmail.com
  • Fund Project:
  • 摘要: 微塑料是一种广泛存在于各种环境介质中的新兴污染物,但目前对于该污染物的生态风险评价方法尚不成熟。本文基于物种敏感性分布(species sensitivity distribution,SSD)使用风险商法,对中国13条典型河流微塑料污染进行了生态风险评估。首先构建了淡水生物对微塑料的敏感性分布曲线,计算出微塑料对淡水生物的预测无影响浓度为1.9×105 n·m-3,再根据各河流的微塑料赋存状况计算出对应的风险商值。结果显示,洞庭湖、洪湖和三峡水库等6个水域的风险商值<0.1,无微塑料污染生态风险;珠江、太湖、鄱阳湖、茅洲河、岷江(成都段)和玛纳斯河有个别采样点风险商值>0.1,存在潜在微塑料污染生态风险;而黄河下游风险商值>1,存在较为严重的微塑料污染生态风险。
  • 加载中
  • Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    蔡立奇. 微塑料在不同环境中的污染特征及其降解行为研究[D]. 广州:广东工业大学, 2019:10 Cai L Q. Study on the characteristics of microplastics in different environments and their degradation behaviors[D]. Guangzhou:Guangdong University of Technology, 2019:10(in Chinese)
    de Sá L C, Luís L G, Guilhermino L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps):Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions[J]. Environmental Pollution, 2015, 196:359-362
    Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments:Occurrence, accumulation, and biological effects[J]. The Science of the Total Environment, 2020, 703:134699
    Frias J P G L, Nash R. Microplastics:Finding a consensus on the definition[J]. Marine Pollution Bulletin, 2019, 138:145-147
    Nan B X, Su L, Kellar C, et al. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia[J]. Environmental Pollution, 2020, 259:113865
    Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153:91-99
    Ziajahromi S, Kumar A, Neale P A, et al. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates[J]. Environmental Pollution, 2018, 236:425-431
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Catarino A I, Kramm J, Völker C, et al. Risk posed by microplastics:Scientific evidence and public perception[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29:100467
    Everaert G, van Cauwenberghe L, de Rijcke M, et al. Risk assessment of microplastics in the ocean:Modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242:1930-1938
    Jung J W, Park J W, Eo S, et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape[J]. Environmental Pollution, 2021, 270:116217
    Brain R A, Sanderson H, Sibley P K, et al. Probabilistic ecological hazard assessment:Evaluating pharmaceutical effects on aquatic higher plants as an example[J]. Ecotoxicology and Environmental Safety, 2006, 64(2):128-135
    Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry, 2004, 23(2):371-382
    张怡婷, 王蕾, 刘济宁, 等. 应用不同毒理学终点评估酚类物质的生态危害和风险[J]. 生态与农村环境学报, 2016, 32(2):326-331

    Zhang Y T, Wang L, Liu J N, et al. Using different toxicological end points to evaluate phenolic compounds for ecological hazard and risk[J]. Journal of Ecology and Rural Environment, 2016, 32(2):326-331(in Chinese)

    朱小奕. 水生态的物种敏感性风险评价方法改进及应用[D]. 杭州:浙江大学, 2017:4-19 Zhu X Y. Improvement of species sensitivity distributions model for aquatic ecological risk assessment[D]. Hangzhou:Zhejiang University, 2017:4

    -19(in Chinese)

    曾勇, 孙霄, 赖雨薇, 等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用[J]. 生态毒理学报, 2020, 15(5):235-243

    Zeng Y, Sun X, Lai Y W, et al. Aquatic ecosystem risk assessment of polycyclic aromatic hydrocarbons based on species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2020, 15(5):235-243(in Chinese)

    Zimmermann L, Göttlich S, Oehlmann J, et al. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna[J]. Environmental Pollution, 2020, 267:115392
    Jaikumar G, Brun N R, Vijver M G, et al. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure[J]. Environmental Pollution, 2019, 249:638-646
    Au S Y, Bruce T F, Bridges W C, et al. Responses of Hyalella azteca to acute and chronic microplastic exposures[J]. Environmental Toxicology and Chemistry, 2015, 34(11):2564-2572
    Chagas T Q, Araújo A P D C, Malafaia G. Biomicroplastics versus conventional microplastics:An insight on the toxicity of these polymers in dragonfly larvae[J]. Science of the Total Environment, 2021, 761:143231
    Wu D, Wang T, Wang J, et al. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production[J]. The Science of the Total Environment, 2021, 761:143265
    Song C F, Liu Z Z, Wang C L, et al. Different interaction performance between microplastics and microalgae:The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025[J]. Science of the Total Environment, 2020, 723:138146
    Yang H, Xiong H R, Mi K H, et al. Toxicity comparison of nano-sized and micron-sized microplastics to goldfish Carassius auratus larvae[J]. Journal of Hazardous Materials, 2020, 388:122058
    Malafaia G, de Souza A M, Pereira A C, et al. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems[J]. The Science of the Total Environment, 2020, 700:134867
    Guilhermino L, Vieira L R, Ribeiro D, et al. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea[J]. Science of the Total Environment, 2018, 622-623:1131-1142
    United States Environmental Protection Agency (US EPA). Guidelines ecological risk assessment (EPA/630/R-95/002F)[S]. Washington DC:National Center for Environmental Assessment, 1998
    陈锦灿, 方超, 郑榕辉, 等. 应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险[J]. 生态毒理学报, 2020, 15(1):242-255

    Chen J C, Fang C, Zheng R H, et al. Assessing ecological risks of micro(nano) plastics to aquatic organisms using species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2020, 15(1):242-255(in Chinese)

    Burns E E, Boxall A B A. Microplastics in the aquatic environment:Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11):2776-2796
    Li X T, Liang R F, Li Y, et al. Microplastics in inland freshwater environments with different regional functions:A case study on the Chengdu Plain[J]. The Science of the Total Environment, 2021, 789:147938
    Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River Estuary, China[J]. Chemosphere, 2019, 217:879-886
    Su L, Xue Y G, Li L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216:711-719
    Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China:A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575:1369-1374
    Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. The Science of the Total Environment, 2018, 633:539-545
    Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170:180-187
    Su L, Cai H W, Kolandhasamy P, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems[J]. Environmental Pollution, 2018, 234:347-355
    Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617:1620-1627
    Wu P F, Tang Y Y, Dang M, et al. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. The Science of the Total Environment, 2020, 717:135187
    Han M, Niu X R, Tang M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. The Science of the Total Environment, 2020, 707:135601
    Jiang C, Yin L, Li Z, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249:91-98
    Wang G L, Lu J J, Li W J, et al. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China[J]. Ecotoxicology and Environmental Safety, 2021, 208:111477
    秦一鸣. 乌梁素海微塑料污染特征及风险评价[D]. 包头:内蒙古科技大学, 2020:25-26 Qin Y M. Pollution characteristics and risk assessment of microplastics in Lake Ulansuhai[D]. Baotou:Inner Mongolia University of Science & Technology, 2020:25

    -26(in Chinese)

    Peng G Y, Xu P, Zhu B S, et al. Microplastics in freshwater river sediments in Shanghai, China:A case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234:448-456
    Gray A D, Weinstein J E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio)[J]. Environmental Toxicology and Chemistry, 2017, 36(11):3074-3080
    Ziajahromi S, Kumar A, Neale P A, et al. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction:Implications of single and mixture exposures[J]. Environmental Science & Technology, 2017, 51(22):13397-13406
  • 加载中
计量
  • 文章访问数:  4190
  • HTML全文浏览数:  4190
  • PDF下载数:  157
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-18
李丹文, 姚巍, 张胜, 潘雄, 林莉, 吴晓晖. 基于风险商法的中国典型淡水水域微塑料生态风险评价[J]. 生态毒理学报, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
引用本文: 李丹文, 姚巍, 张胜, 潘雄, 林莉, 吴晓晖. 基于风险商法的中国典型淡水水域微塑料生态风险评价[J]. 生态毒理学报, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
Li Danwen, Yao Wei, Zhang Sheng, Pan Xiong, Lin Li, Wu Xiaohui. Ecological Risk Assessment of Microplastics in Typical Freshwater Waters in China Based on Method of Risk Quotient[J]. Asian journal of ecotoxicology, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001
Citation: Li Danwen, Yao Wei, Zhang Sheng, Pan Xiong, Lin Li, Wu Xiaohui. Ecological Risk Assessment of Microplastics in Typical Freshwater Waters in China Based on Method of Risk Quotient[J]. Asian journal of ecotoxicology, 2022, 17(5): 425-434. doi: 10.7524/AJE.1673-5897.20211018001

基于风险商法的中国典型淡水水域微塑料生态风险评价

    通讯作者: 林莉, E-mail: linli1229@hotmail.com
    作者简介: 李丹文(1996-),女,硕士,研究方向为流域水环境保护,E-mail:m201977356@hust.edu.cn
  • 1. 长江科学院流域水环境研究所, 武汉 430010;
  • 2. 盐城市城镇排水管理处, 盐城 224001;
  • 3. 伦敦大学学院化学工程学院, 伦敦 W1W5DF;
  • 4. 华中科技大学环境科学与工程学院, 武汉 430074
基金项目:

国家自然科学基金资助项目(52179057);中央级公益性科研院所基本科研业务费项目(CKSF2021480/SH);武汉市科技局项目(2020010601012285)

摘要: 微塑料是一种广泛存在于各种环境介质中的新兴污染物,但目前对于该污染物的生态风险评价方法尚不成熟。本文基于物种敏感性分布(species sensitivity distribution,SSD)使用风险商法,对中国13条典型河流微塑料污染进行了生态风险评估。首先构建了淡水生物对微塑料的敏感性分布曲线,计算出微塑料对淡水生物的预测无影响浓度为1.9×105 n·m-3,再根据各河流的微塑料赋存状况计算出对应的风险商值。结果显示,洞庭湖、洪湖和三峡水库等6个水域的风险商值<0.1,无微塑料污染生态风险;珠江、太湖、鄱阳湖、茅洲河、岷江(成都段)和玛纳斯河有个别采样点风险商值>0.1,存在潜在微塑料污染生态风险;而黄河下游风险商值>1,存在较为严重的微塑料污染生态风险。

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回