二噁英及类二噁英污染物致免疫毒性作用机制研究进展
Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants
-
摘要: 二噁英是芳烃受体(aryl hydrocarbon receptor, AHR)的高效外源配体,已知可以通过AHR发挥免疫毒性作用。经典的AHR毒性通路是指AHR由配体激活后进入细胞核,并与芳烃受体核转运蛋白(AHR nuclear translocator, ARNT)形成复合物,诱导二噁英反应元件(dioxin response element, DRE)控制的下游免疫相关基因的表达。但新的研究表明二噁英诱导免疫毒性还存在多种非经典的AHR通路,即激活后的AHR与其他信号通路(如炎症反应、细胞周期和信号转导)中的关键蛋白之间发生相互串扰,影响细胞功能。该过程中,AHR直接或以AHR-ARNT复合物的形式与其他转录因子相互作用,协同募集到共识或非共识DRE位点并与之结合,进而影响关键分子的转录和表达。目前已有许多与二噁英结构相似的物质被证明具有类二噁英的AHR激活活性,包括部分多氯联苯、多环芳烃和多溴联苯醚等,被称为类二噁英物质(dioxin-like compounds, DLCs)。DLCs可以通过激活AHR影响免疫系统,但一些研究表明,部分DLCs的免疫毒性可通过非AHR依赖的途径产生,这些途径可能包括导致细胞氧化应激、影响细胞呼吸爆发反应、促进细胞凋亡和干扰线粒体功能等。总之,与二噁英相比,DLCs的免疫毒性作用机制并不清晰,还需要更为系统的研究。Abstract: Dioxins are highly potent exogenous ligands of aryl hydrocarbon receptor (AHR), which are known to exert immunotoxic effects through AHR. The canonical AHR toxicity pathway is that activated AHR enters the nucleus and forms a complex with AHR nuclear translocator (ARNT), inducing the expression of downstream immune-related genes controlled by dioxin response element (DRE). However, new studies have shown that non-canonical AHR pathways are responsible to dioxin-induced immunotoxicity to some extent. Non-canonical AHR pathways refer to that activated AHR cross-talk with key proteins in other signaling pathways (such as inflammation, cell cycle, signal transduction), affecting cell function. In this process, AHR directly or in the form of AhR-ARNT complex interacts with other transcription factors, and they are collaboratively recruited and bind to consensus or non-consensus DRE sites, then affecting the transcription and expression of key molecules. At present, many substances with similar structure to dioxins have been proved to have dioxin-like AHR activation activity, including some polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), which are called dioxin-like compounds (DLCs). DLCs can affect the immune system by activating AHR, but AHR-independent pathways have been also suggested in some research, which could include causing cells to oxidative stress, affecting respiratory burst response, interfering with mitochondrial function and promoting cell apoptosis, etc. In conclusion, compared with dioxins, the immunotoxic mechanism of DLCs is not clear, and more systematic studies are needed.
-
Key words:
- dioxins /
- dioxin-like compounds /
- aryl hydrocarbon receptor /
- immunotoxicity
-
-
马德金. 二恶英类化学物质的分类及其危害分析[J]. 科技传播, 2011, 3(5): 72-73 Ma D J. Classification and hazard analysis of dioxins-class chemicals [J]. Public Communication of Science & Technology, 2011, 3(5): 72-73 (in Chinese)
Mandal P K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology [J]. Journal of Comparative Physiology B, 2005, 175(4): 221-230 吴明红, 李刚, 马静, 等. 新型有机污染物氯代多环芳烃的研究进展[J]. 自然杂志, 2010, 32(4): 217-223 Wu M H, Li G, Ma J, et al. Research progress on new type organic contaminants—Chlorinated polycyclic aromatic hydrocarbons [J]. Chinese Journal of Nature, 2010, 32(4): 217-223 (in Chinese)
Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO-and MeO-analogues of PBDEs’ the potential risk through consumption of fish from Eastern China [J]. Environmental Science & Technology, 2012, 46(19): 10781-10788 Bock K W, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions [J]. Biochemical Pharmacology, 2006, 72(4): 393-404 Sun Y V, Boverhof D R, Burgoon L D, et al. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences [J]. Nucleic Acids Research, 2004, 32(15): 4512-4523 夏洁. 二恶英类污染物的高通量生物检测技术研究及其在在环境监测中的应用[D]. 南京: 南京大学, 2013: 1-5, 12-13 Xia J. Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring [D]. Nanjing: Nanjing University, 2013: 1-5, 12-13 (in Chinese)
Holsapple M P, Snyder N K, Wood S C, et al. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: 1991 update [J]. Toxicology, 1991, 69(3): 219-255 Kerkvliet N I. AHR-mediated immunomodulation: The role of altered gene transcription [J]. Biochemical Pharmacology, 2009, 77(4): 746-760 Vorderstrasse B A, Bohn A A, Lawrence B P. Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD [J]. Toxicology, 2003, 188(1): 15-28 Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: Safeguarding barrier function [J]. Nature Reviews Gastroenterology & Hepatology, 2021, 18(8): 559-570 Stockinger B, di Meglio P, Gialitakis M, et al. The aryl hydrocarbon receptor: Multitasking in the immune system [J]. Annual Review of Immunology, 2014, 32: 403-432 Kobayashi D, Ahmed S, Ishida M, et al. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT [J]. Toxicology, 2009, 258(1): 25-32 Doi H, Baba T, Tohyama C, et al. Functional activation of arylhydrocarbon receptor (AhR) in primary T cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Chemosphere, 2003, 52(4): 655-662 Cho M K, Park J G, Iwata H, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expression of immune-related genes in the thymus of chicken embryos [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111947 Pang C F, Zhu C H, Zhang Y Y, et al. 2,3,7,8-tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell [J]. Toxicology Letters, 2019, 311: 49-57 Ito T, Inouye K, Fujimaki H, et al. Mechanism of TCDD-induced suppression of antibody production: Effect on T cell-derived cytokine production in the primary immune reaction of mice [J]. Toxicological Sciences, 2002, 70(1): 46-54 Mitchell K A, Lawrence B. T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD: Suppression of antibody production, but not the response of CD8+ T cells, during infection with influenza virus [J]. Toxicology and Applied Pharmacology, 2003, 192(3): 275-286 Sulentic C E, Holsapple M P, Kaminski N E. Putative link between transcriptional regulation of IgM expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the aryl hydrocarbon receptor/dioxin-responsive enhancer signaling pathway [J]. The Journal of Pharmacology and Experimental Therapeutics, 2000, 295(2): 705-716 Lu H T, Crawford R B, Suarez-Martinez J E, et al. Induction of the aryl hydrocarbon receptor-responsive genes and modulation of the immunoglobulin M response by 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary human B cells [J]. Toxicological Sciences, 2010, 118(1): 86-97 Choi J Y, Oughton J A, Kerkvliet N I. Functional alterations in CD11b(+)Gr-1(+) cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. International Immunopharmacology, 2003, 3(4): 553-570 Xu H Y, Zhang X Y, Li H K, et al. Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae [J]. Aquatic Toxicology, 2018, 201: 99-108 Li X Y, Li N, Han Y N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms [J]. Environmental Pollution, 2021, 287: 117302 Bankoti J, Rase B, Simones T, et al. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells [J]. Toxicology and Applied Pharmacology, 2010, 246(1-2): 18-28 Bankoti J, Burnett A, Navarro S, et al. Effects of TCDD on the fate of naive dendritic cells [J]. Toxicological Sciences, 2010, 115(2): 422-434 Vorderstrasse B A, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules [J]. Toxicology and Applied Pharmacology, 2001, 171(2): 117-125 Lee J A, Hwang J A, Sung H N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicology Letters, 2007, 173(1): 31-40 Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures [J]. The Journal of Experimental Medicine, 1997, 185(2): 317-328 Wright E J, De Castro K P, Joshi A D, et al. Canonical and non-canonical aryl hydrocarbon receptor signaling pathways [J]. Current Opinion in Toxicology, 2017, 2: 87-92 Tang J S, Cait A, Li Y Y, et al. Practical approach to explore the effects of polyphenols on aryl hydrocarbon receptor regulated immune function [J]. Journal of Agricultural and Food Chemistry, 2021, 69(31): 8625-8633 Lahoti T S, Boyer J A, Kusnadi A, et al. Aryl hydrocarbon receptor activation synergistically induces lipopolysaccharide-mediated expression of proinflammatory chemokine (c-c motif) ligand 20 [J]. Toxicological Sciences, 2015, 148(1): 229-240 DiNatale B C, Schroeder J C, Francey L J, et al. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling [J]. The Journal of Biological Chemistry, 2010, 285(32): 24388-24397 Vogel C F A, Matsumura F. A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family [J]. Biochemical Pharmacology, 2009, 77(4): 734-745 Vogel C F A, Sciullo E, Matsumura F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines [J]. Biochemical and Biophysical Research Communications, 2007, 363(3): 722-726 Vogel C F A, Goth S R, Dong B, et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase [J]. Biochemical and Biophysical Research Communications, 2008, 375(3): 331-335 Li Q S, Harden J L, Anderson C D, et al. Tolerogenic phenotype of IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop [J]. Journal of Immunology, 2016, 197(3): 962-970 Blevins L K, Zhou J J, Crawford R, et al. TCDD-mediated suppression of nave human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ [J]. Cellular Signalling, 2020, 65: 109447 Phadnis-Moghe A S, Li J P, Crawford R B, et al. SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicology and Applied Pharmacology, 2016, 310: 41-50 Sulentic C E W, Kaminski N E. The long winding road toward understanding the molecular mechanisms for B-cell suppression by2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicological Sciences, 2011, 120(suppl.1): S171-S191 Camacho I A, Hassuneh M R, Nagarkatti M, et al. Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells [J]. Toxicology, 2001, 165(1): 51-63 Camacho I A, Singh N, Hegde V L, et al. Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells [J]. Journal of Immunology, 2005, 175(1): 90-103 Wittner J, Schuh W. Krüppel-like factor 2 (KLF2) in immune cell migration [J]. Vaccines, 2021, 9(10): 1171 McMillan B J, McMillan S N, Glover E, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development [J]. Journal of Biological Chemistry, 2007, 282(17): 12590-12597 Kimura A, Abe H, Tsuruta S, et al. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production [J]. International Immunology, 2014, 26(4): 209-220 Hammond J A, Hall A J, Dyrynda E A. Comparison of polychlorinated biphenyl (PCB) induced effects on innate immune functions in harbour and grey seals [J]. Aquatic Toxicology, 2005, 74(2): 126-138 Ross P, De Swart R, Addison R, et al. Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk? [J]. Toxicology, 1996, 112(2): 157-169 Sawyna J M, Spivia W R, Radecki K, et al. Association between chronic organochlorine exposure and immunotoxicity in the round stingray (Urobatis halleri) [J]. Environmental Pollution, 2017, 223: 42-50 Xiao C Y, Zhang Y F, Zhu F. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla paramamosain [J]. Environmental Pollution, 2021, 291: 118229 Schulze Stack A, Altman-Hamamdzic S, Morris P J, et al. Polychlorinated biphenyl mixtures (Aroclors) inhibit LPS-induced murine splenocyte proliferation in vitro [J]. Toxicology, 1999, 139(1-2): 137-154 Lyche J, Larsen H, Skaare J U, et al. Effects of perinatal exposure to low doses of PCB 153 and PCB 126 on lymphocyte proliferation and hematology in goat kids [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(11): 889-904 Voie Ø A, Fonnum F. Ortho substituted polychlorinated biphenyls elevate intracellular in human granulocytes [J]. Environmental Toxicology and Pharmacology, 1998, 5(2): 105-112 Voie Ø A, Wiik P, Fonnum F. Ortho-substituted polychlorinated biphenyls activate respiratory burst measured as luminol-amplified chemoluminescence in human granulocytes [J]. Toxicology and Applied Pharmacology, 1998, 150(2): 369-375 Kristoffersen A, Voie Ø A, Fonnum F. Ortho-substituted polybrominated biphenyls activate respiratory burst in granulocytes from humans [J]. Toxicology Letters, 2002, 129(1-2): 161-166 Voie Ø A, Tysklind M, Andersson P L, et al. Activation of respiratory burst in human granulocytes by polychlorinated biphenyls: A structure-activity study [J]. Toxicology and Applied Pharmacology, 2000, 167(2): 118-124 Sørmo E G, Larsen H J S, Johansen G M, et al. Immunotoxicity of polychlorinated biphenyls (PCB) in free-ranging gray seal pups with special emphasis on dioxin-like congeners [J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72(3-4): 266-276 Levin M, De Guise S, Ross P S. Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal (Phoca vitulina) pups from British Columbia, Canada [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1247-1252 Levin M, Gebhard E, Jasperse L, et al. Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida) [J]. Environmental Research, 2016, 151: 244-250 Levin M, Morsey B, Mori C, et al. Specific non-coplanar PCB-mediated modulation of bottlenose dolphin and beluga whale phagocytosis upon in vitro exposure [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(19): 1517-1535 Levin M, Morsey B, Mori C, et al. Non-coplanar PCB-mediated modulation of human leukocyte phagocytosis: A new mechanism for immunotoxicity [J]. Journal of Toxicology and Environmental Health Part A, 2005, 68(22): 1977-1993 Rousselet E, Levin M, Gebhard E, et al. Polychlorinated biphenyls (PCBs) modulate both phagocytosis and NK cell activity in vitro in juvenile loggerhead sea turtles (Caretta caretta) [J]. Journal of Toxicology and Environmental Health Part A, 2017, 80(10-12): 556-561 Cary T L, Karasov W H. Larval exposure to polychlorinated biphenyl-126 led to a long-lasting decrease in immune function in postmetamorphic juvenile northern leopard frogs, Lithobates pipiens [J]. Environmental Toxicology and Chemistry, 2022, 41(1): 81-94 赵婷, 茆广华, 冯伟伟, 等. 类二噁英多氯联苯致成年小鼠免疫毒性效应及机制研究[C]. 中国毒理学会计算毒理专业委员会. 第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议会议摘要. 兰州: 中国毒理学会计算毒理专业委员会, 2018: 94-95 Du F, Zhao T, Ji H C, et al. Dioxin-like (DL-) polychlorinated biphenyls induced immunotoxicity through apoptosis in mice splenocytes via the AhR mediated mitochondria dependent signaling pathways [J]. Food and Chemical Toxicology, 2019, 134: 110803 Duffy-Whritenour J E, Kurtzman R Z, Kennedy S, et al. Non-coplanar polychlorinated biphenyl (PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system [J]. Journal of Immunotoxicology, 2010, 7(4): 318-326 Miyata M, Furukawa M, Takahashi K, et al. Mechanism of 7,12-dimethylbenzanthracene-induced immunotoxicity: Role of metabolic activation at the target organ [J]. Japanese Journal of Pharmacology, 2001, 86(3): 302-309 Guan S, Huang Y X, Feng Z, et al. The toxic effects of benzopyrene on activated mouse T cells in vitro [J]. Immunopharmacology and Immunotoxicology, 2017, 39(3): 117-123 Phalen L J, Köllner B, Leclair L A, et al. The effects of benzopyrene on leucocyte distribution and antibody response in rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 2014, 147: 121-128 Davila D R, Romero D L, Burchiel S W. Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by α-naphthoflavone [J]. Toxicology and Applied Pharmacology, 1996, 139(2): 333-341 Jeon T W, Jin C H, Lee S K, et al. In vivo and in vitro immunosuppressive effects of benzofluoranthene in female Balb/c mice [J]. Journal of Toxicology and Environmental Health, Part A, 2005, 68(23-24): 2033-2050 Lauer F T, Walker M K, Burchiel S W. Dibenzochrysene (DBC) suppresses antibody formation in spleen cells following oral exposures of mice [J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(1): 16-24 Smith D C, Smith M J, White K L. Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1 mice [J]. Journal of Immunotoxicology, 2010, 7(3): 219-231 Laupeze B, Amiot L, Sparfel L, et al. Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells [J]. Journal of Immunology, 2002, 168(6): 2652-2658 van Grevenynghe J, Rion S, Le Ferrec E, et al. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages [J]. Journal of Immunology, 2003, 170(5): 2374-2381 Xie J, Zhao C F, Han Q, et al. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada martensii [J]. Fish & Shellfish Immunology, 2017, 63: 237-244 Tian Y M, Pan L Q, Miao J J, et al. The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro [J]. Science of the Total Environment, 2021, 794: 148731 Davila D R. Protein tyrosine kinase activation by polycyclic aromatic hydrocarbons in human HPB-ALL T cells [J]. Journal of Toxicology and Environmental Health, Part A, 1999, 56(4): 249-261 Tewari P, Roy R, Mishra S, et al. Benzanthrone induced immunotoxicity via oxidative stress and inflammatory mediators in Balb/c mice [J]. Immunobiology, 2015, 220(3): 369-381 Bhargava A, Kumari R, Khare S, et al. Mapping the mitochondrial regulation of epigenetic modifications in association with carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon exposure [J]. International Journal of Toxicology, 2020, 39(5): 465-476 Fowles J R, Fairbrother A, Baecher-Steppan L, et al. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice [J]. Toxicology, 1994, 86(1-2): 49-61 Bondy G S, Lefebvre D E, Aziz S, et al. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat [J]. Environmental Toxicology, 2013, 28(4): 215-228 Martin P A, Mayne G J, Bursian F S J, et al. Immunotoxicity of the commercial polybrominated diphenyl ether mixture DE-71 in ranch mink (Mustela vison) [J]. Environmental Toxicology and Chemistry, 2007, 26(5): 988-997 Fernie K J, Mayne G, Laird Shutt J, et al. Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDEs [J]. Environmental Pollution, 2005, 138(3): 485-493 Lv Q Y, Wan B, Guo L H, et al. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: Apoptosis and immune cell dysfunction [J]. Chemosphere, 2015, 120: 621-630 Hennigar S R, Myers J L, Tagliaferro A R. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro [J]. Experimental Biology and Medicine, 2012, 237(4): 429-434 Rajput I R, Xiao Z Y, Sun Y J, et al. Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response [J]. Aquatic Toxicology, 2018, 203: 1-9 Huang Y, Rajput I R, Sanganyado E, et al. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitro study [J]. Chemosphere, 2020, 254: 126717 Subbaramaiah K, Cole P A, Dannenberg A J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms [J]. Cancer Research, 2002, 62(9): 2522-2530 Ricciotti E, FitzGerald G A. Prostaglandins and inflammation [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(5): 986-1000 -

计量
- 文章访问数: 4404
- HTML全文浏览数: 4404
- PDF下载数: 106
- 施引文献: 0