二噁英及类二噁英污染物致免疫毒性作用机制研究进展

王鑫格, 李娜, 韩颖楠, 马梅, 吴兴华, 李翀, 王殿常. 二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J]. 生态毒理学报, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
引用本文: 王鑫格, 李娜, 韩颖楠, 马梅, 吴兴华, 李翀, 王殿常. 二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J]. 生态毒理学报, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
Wang Xinge, Li Na, Han Yingnan, Ma Mei, Wu Xinghua, Li Chong, Wang Dianchang. Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants[J]. Asian journal of ecotoxicology, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
Citation: Wang Xinge, Li Na, Han Yingnan, Ma Mei, Wu Xinghua, Li Chong, Wang Dianchang. Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants[J]. Asian journal of ecotoxicology, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003

二噁英及类二噁英污染物致免疫毒性作用机制研究进展

    作者简介: 王鑫格(1997—),女,博士研究生,研究方向为水生态毒理学,E-mail:xgwang_st@rcees.ac.cn
    通讯作者: 李娜, E-mail: lina@rcees.ac.cn
  • 基金项目:

    国家重点研发计划课题(2021YFC3200803);中国长江三峡集团有限公司科研项目(201903139);场地土壤环境基准推导及表征关键技术(2019YFC1804604)

  • 中图分类号: X171.5

Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants

    Corresponding author: Li Na, lina@rcees.ac.cn
  • Fund Project:
  • 摘要: 二噁英是芳烃受体(aryl hydrocarbon receptor, AHR)的高效外源配体,已知可以通过AHR发挥免疫毒性作用。经典的AHR毒性通路是指AHR由配体激活后进入细胞核,并与芳烃受体核转运蛋白(AHR nuclear translocator, ARNT)形成复合物,诱导二噁英反应元件(dioxin response element, DRE)控制的下游免疫相关基因的表达。但新的研究表明二噁英诱导免疫毒性还存在多种非经典的AHR通路,即激活后的AHR与其他信号通路(如炎症反应、细胞周期和信号转导)中的关键蛋白之间发生相互串扰,影响细胞功能。该过程中,AHR直接或以AHR-ARNT复合物的形式与其他转录因子相互作用,协同募集到共识或非共识DRE位点并与之结合,进而影响关键分子的转录和表达。目前已有许多与二噁英结构相似的物质被证明具有类二噁英的AHR激活活性,包括部分多氯联苯、多环芳烃和多溴联苯醚等,被称为类二噁英物质(dioxin-like compounds, DLCs)。DLCs可以通过激活AHR影响免疫系统,但一些研究表明,部分DLCs的免疫毒性可通过非AHR依赖的途径产生,这些途径可能包括导致细胞氧化应激、影响细胞呼吸爆发反应、促进细胞凋亡和干扰线粒体功能等。总之,与二噁英相比,DLCs的免疫毒性作用机制并不清晰,还需要更为系统的研究。
  • 加载中
  • 马德金. 二恶英类化学物质的分类及其危害分析[J]. 科技传播, 2011, 3(5): 72-73

    Ma D J. Classification and hazard analysis of dioxins-class chemicals [J]. Public Communication of Science & Technology, 2011, 3(5): 72-73 (in Chinese)

    Mandal P K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology [J]. Journal of Comparative Physiology B, 2005, 175(4): 221-230
    吴明红, 李刚, 马静, 等. 新型有机污染物氯代多环芳烃的研究进展[J]. 自然杂志, 2010, 32(4): 217-223

    Wu M H, Li G, Ma J, et al. Research progress on new type organic contaminants—Chlorinated polycyclic aromatic hydrocarbons [J]. Chinese Journal of Nature, 2010, 32(4): 217-223 (in Chinese)

    Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO-and MeO-analogues of PBDEs’ the potential risk through consumption of fish from Eastern China [J]. Environmental Science & Technology, 2012, 46(19): 10781-10788
    Bock K W, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions [J]. Biochemical Pharmacology, 2006, 72(4): 393-404
    Sun Y V, Boverhof D R, Burgoon L D, et al. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences [J]. Nucleic Acids Research, 2004, 32(15): 4512-4523
    夏洁. 二恶英类污染物的高通量生物检测技术研究及其在在环境监测中的应用[D]. 南京: 南京大学, 2013: 1-5, 12-13

    Xia J. Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring [D]. Nanjing: Nanjing University, 2013: 1-5, 12-13 (in Chinese)

    Holsapple M P, Snyder N K, Wood S C, et al. A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: 1991 update [J]. Toxicology, 1991, 69(3): 219-255
    Kerkvliet N I. AHR-mediated immunomodulation: The role of altered gene transcription [J]. Biochemical Pharmacology, 2009, 77(4): 746-760
    Vorderstrasse B A, Bohn A A, Lawrence B P. Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD [J]. Toxicology, 2003, 188(1): 15-28
    Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: Safeguarding barrier function [J]. Nature Reviews Gastroenterology & Hepatology, 2021, 18(8): 559-570
    Stockinger B, di Meglio P, Gialitakis M, et al. The aryl hydrocarbon receptor: Multitasking in the immune system [J]. Annual Review of Immunology, 2014, 32: 403-432
    Kobayashi D, Ahmed S, Ishida M, et al. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT [J]. Toxicology, 2009, 258(1): 25-32
    Doi H, Baba T, Tohyama C, et al. Functional activation of arylhydrocarbon receptor (AhR) in primary T cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Chemosphere, 2003, 52(4): 655-662
    Cho M K, Park J G, Iwata H, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expression of immune-related genes in the thymus of chicken embryos [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111947
    Pang C F, Zhu C H, Zhang Y Y, et al. 2,3,7,8-tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell [J]. Toxicology Letters, 2019, 311: 49-57
    Ito T, Inouye K, Fujimaki H, et al. Mechanism of TCDD-induced suppression of antibody production: Effect on T cell-derived cytokine production in the primary immune reaction of mice [J]. Toxicological Sciences, 2002, 70(1): 46-54
    Mitchell K A, Lawrence B. T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD: Suppression of antibody production, but not the response of CD8+ T cells, during infection with influenza virus [J]. Toxicology and Applied Pharmacology, 2003, 192(3): 275-286
    Sulentic C E, Holsapple M P, Kaminski N E. Putative link between transcriptional regulation of IgM expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the aryl hydrocarbon receptor/dioxin-responsive enhancer signaling pathway [J]. The Journal of Pharmacology and Experimental Therapeutics, 2000, 295(2): 705-716
    Lu H T, Crawford R B, Suarez-Martinez J E, et al. Induction of the aryl hydrocarbon receptor-responsive genes and modulation of the immunoglobulin M response by 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary human B cells [J]. Toxicological Sciences, 2010, 118(1): 86-97
    Choi J Y, Oughton J A, Kerkvliet N I. Functional alterations in CD11b(+)Gr-1(+) cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. International Immunopharmacology, 2003, 3(4): 553-570
    Xu H Y, Zhang X Y, Li H K, et al. Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae [J]. Aquatic Toxicology, 2018, 201: 99-108
    Li X Y, Li N, Han Y N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms [J]. Environmental Pollution, 2021, 287: 117302
    Bankoti J, Rase B, Simones T, et al. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells [J]. Toxicology and Applied Pharmacology, 2010, 246(1-2): 18-28
    Bankoti J, Burnett A, Navarro S, et al. Effects of TCDD on the fate of naive dendritic cells [J]. Toxicological Sciences, 2010, 115(2): 422-434
    Vorderstrasse B A, Kerkvliet N I. 2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules [J]. Toxicology and Applied Pharmacology, 2001, 171(2): 117-125
    Lee J A, Hwang J A, Sung H N, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicology Letters, 2007, 173(1): 31-40
    Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures [J]. The Journal of Experimental Medicine, 1997, 185(2): 317-328
    Wright E J, De Castro K P, Joshi A D, et al. Canonical and non-canonical aryl hydrocarbon receptor signaling pathways [J]. Current Opinion in Toxicology, 2017, 2: 87-92
    Tang J S, Cait A, Li Y Y, et al. Practical approach to explore the effects of polyphenols on aryl hydrocarbon receptor regulated immune function [J]. Journal of Agricultural and Food Chemistry, 2021, 69(31): 8625-8633
    Lahoti T S, Boyer J A, Kusnadi A, et al. Aryl hydrocarbon receptor activation synergistically induces lipopolysaccharide-mediated expression of proinflammatory chemokine (c-c motif) ligand 20 [J]. Toxicological Sciences, 2015, 148(1): 229-240
    DiNatale B C, Schroeder J C, Francey L J, et al. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling [J]. The Journal of Biological Chemistry, 2010, 285(32): 24388-24397
    Vogel C F A, Matsumura F. A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family [J]. Biochemical Pharmacology, 2009, 77(4): 734-745
    Vogel C F A, Sciullo E, Matsumura F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines [J]. Biochemical and Biophysical Research Communications, 2007, 363(3): 722-726
    Vogel C F A, Goth S R, Dong B, et al. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase [J]. Biochemical and Biophysical Research Communications, 2008, 375(3): 331-335
    Li Q S, Harden J L, Anderson C D, et al. Tolerogenic phenotype of IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop [J]. Journal of Immunology, 2016, 197(3): 962-970
    Blevins L K, Zhou J J, Crawford R, et al. TCDD-mediated suppression of nave human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ [J]. Cellular Signalling, 2020, 65: 109447
    Phadnis-Moghe A S, Li J P, Crawford R B, et al. SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicology and Applied Pharmacology, 2016, 310: 41-50
    Sulentic C E W, Kaminski N E. The long winding road toward understanding the molecular mechanisms for B-cell suppression by2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Toxicological Sciences, 2011, 120(suppl.1): S171-S191
    Camacho I A, Hassuneh M R, Nagarkatti M, et al. Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells [J]. Toxicology, 2001, 165(1): 51-63
    Camacho I A, Singh N, Hegde V L, et al. Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells [J]. Journal of Immunology, 2005, 175(1): 90-103
    Wittner J, Schuh W. Krüppel-like factor 2 (KLF2) in immune cell migration [J]. Vaccines, 2021, 9(10): 1171
    McMillan B J, McMillan S N, Glover E, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development [J]. Journal of Biological Chemistry, 2007, 282(17): 12590-12597
    Kimura A, Abe H, Tsuruta S, et al. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production [J]. International Immunology, 2014, 26(4): 209-220
    Hammond J A, Hall A J, Dyrynda E A. Comparison of polychlorinated biphenyl (PCB) induced effects on innate immune functions in harbour and grey seals [J]. Aquatic Toxicology, 2005, 74(2): 126-138
    Ross P, De Swart R, Addison R, et al. Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk? [J]. Toxicology, 1996, 112(2): 157-169
    Sawyna J M, Spivia W R, Radecki K, et al. Association between chronic organochlorine exposure and immunotoxicity in the round stingray (Urobatis halleri) [J]. Environmental Pollution, 2017, 223: 42-50
    Xiao C Y, Zhang Y F, Zhu F. Immunotoxicity of polychlorinated biphenyls (PCBs) to the marine crustacean species, Scylla paramamosain [J]. Environmental Pollution, 2021, 291: 118229
    Schulze Stack A, Altman-Hamamdzic S, Morris P J, et al. Polychlorinated biphenyl mixtures (Aroclors) inhibit LPS-induced murine splenocyte proliferation in vitro [J]. Toxicology, 1999, 139(1-2): 137-154
    Lyche J, Larsen H, Skaare J U, et al. Effects of perinatal exposure to low doses of PCB 153 and PCB 126 on lymphocyte proliferation and hematology in goat kids [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(11): 889-904
    Voie Ø A, Fonnum F. Ortho substituted polychlorinated biphenyls elevate intracellular in human granulocytes [J]. Environmental Toxicology and Pharmacology, 1998, 5(2): 105-112
    Voie Ø A, Wiik P, Fonnum F. Ortho-substituted polychlorinated biphenyls activate respiratory burst measured as luminol-amplified chemoluminescence in human granulocytes [J]. Toxicology and Applied Pharmacology, 1998, 150(2): 369-375
    Kristoffersen A, Voie Ø A, Fonnum F. Ortho-substituted polybrominated biphenyls activate respiratory burst in granulocytes from humans [J]. Toxicology Letters, 2002, 129(1-2): 161-166
    Voie Ø A, Tysklind M, Andersson P L, et al. Activation of respiratory burst in human granulocytes by polychlorinated biphenyls: A structure-activity study [J]. Toxicology and Applied Pharmacology, 2000, 167(2): 118-124
    Sørmo E G, Larsen H J S, Johansen G M, et al. Immunotoxicity of polychlorinated biphenyls (PCB) in free-ranging gray seal pups with special emphasis on dioxin-like congeners [J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72(3-4): 266-276
    Levin M, De Guise S, Ross P S. Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal (Phoca vitulina) pups from British Columbia, Canada [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1247-1252
    Levin M, Gebhard E, Jasperse L, et al. Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida) [J]. Environmental Research, 2016, 151: 244-250
    Levin M, Morsey B, Mori C, et al. Specific non-coplanar PCB-mediated modulation of bottlenose dolphin and beluga whale phagocytosis upon in vitro exposure [J]. Journal of Toxicology and Environmental Health Part A, 2004, 67(19): 1517-1535
    Levin M, Morsey B, Mori C, et al. Non-coplanar PCB-mediated modulation of human leukocyte phagocytosis: A new mechanism for immunotoxicity [J]. Journal of Toxicology and Environmental Health Part A, 2005, 68(22): 1977-1993
    Rousselet E, Levin M, Gebhard E, et al. Polychlorinated biphenyls (PCBs) modulate both phagocytosis and NK cell activity in vitro in juvenile loggerhead sea turtles (Caretta caretta) [J]. Journal of Toxicology and Environmental Health Part A, 2017, 80(10-12): 556-561
    Cary T L, Karasov W H. Larval exposure to polychlorinated biphenyl-126 led to a long-lasting decrease in immune function in postmetamorphic juvenile northern leopard frogs, Lithobates pipiens [J]. Environmental Toxicology and Chemistry, 2022, 41(1): 81-94
    赵婷, 茆广华, 冯伟伟, 等. 类二噁英多氯联苯致成年小鼠免疫毒性效应及机制研究[C]. 中国毒理学会计算毒理专业委员会. 第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议会议摘要. 兰州: 中国毒理学会计算毒理专业委员会, 2018: 94-95
    Du F, Zhao T, Ji H C, et al. Dioxin-like (DL-) polychlorinated biphenyls induced immunotoxicity through apoptosis in mice splenocytes via the AhR mediated mitochondria dependent signaling pathways [J]. Food and Chemical Toxicology, 2019, 134: 110803
    Duffy-Whritenour J E, Kurtzman R Z, Kennedy S, et al. Non-coplanar polychlorinated biphenyl (PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system [J]. Journal of Immunotoxicology, 2010, 7(4): 318-326
    Miyata M, Furukawa M, Takahashi K, et al. Mechanism of 7,12-dimethylbenzanthracene-induced immunotoxicity: Role of metabolic activation at the target organ [J]. Japanese Journal of Pharmacology, 2001, 86(3): 302-309
    Guan S, Huang Y X, Feng Z, et al. The toxic effects of benzopyrene on activated mouse T cells in vitro [J]. Immunopharmacology and Immunotoxicology, 2017, 39(3): 117-123
    Phalen L J, Köllner B, Leclair L A, et al. The effects of benzopyrene on leucocyte distribution and antibody response in rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 2014, 147: 121-128
    Davila D R, Romero D L, Burchiel S W. Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by α-naphthoflavone [J]. Toxicology and Applied Pharmacology, 1996, 139(2): 333-341
    Jeon T W, Jin C H, Lee S K, et al. In vivo and in vitro immunosuppressive effects of benzofluoranthene in female Balb/c mice [J]. Journal of Toxicology and Environmental Health, Part A, 2005, 68(23-24): 2033-2050
    Lauer F T, Walker M K, Burchiel S W. Dibenzochrysene (DBC) suppresses antibody formation in spleen cells following oral exposures of mice [J]. Journal of Toxicology and Environmental Health, Part A, 2013, 76(1): 16-24
    Smith D C, Smith M J, White K L. Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1 mice [J]. Journal of Immunotoxicology, 2010, 7(3): 219-231
    Laupeze B, Amiot L, Sparfel L, et al. Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells [J]. Journal of Immunology, 2002, 168(6): 2652-2658
    van Grevenynghe J, Rion S, Le Ferrec E, et al. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages [J]. Journal of Immunology, 2003, 170(5): 2374-2381
    Xie J, Zhao C F, Han Q, et al. Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada martensii [J]. Fish & Shellfish Immunology, 2017, 63: 237-244
    Tian Y M, Pan L Q, Miao J J, et al. The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro [J]. Science of the Total Environment, 2021, 794: 148731
    Davila D R. Protein tyrosine kinase activation by polycyclic aromatic hydrocarbons in human HPB-ALL T cells [J]. Journal of Toxicology and Environmental Health, Part A, 1999, 56(4): 249-261
    Tewari P, Roy R, Mishra S, et al. Benzanthrone induced immunotoxicity via oxidative stress and inflammatory mediators in Balb/c mice [J]. Immunobiology, 2015, 220(3): 369-381
    Bhargava A, Kumari R, Khare S, et al. Mapping the mitochondrial regulation of epigenetic modifications in association with carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon exposure [J]. International Journal of Toxicology, 2020, 39(5): 465-476
    Fowles J R, Fairbrother A, Baecher-Steppan L, et al. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice [J]. Toxicology, 1994, 86(1-2): 49-61
    Bondy G S, Lefebvre D E, Aziz S, et al. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat [J]. Environmental Toxicology, 2013, 28(4): 215-228
    Martin P A, Mayne G J, Bursian F S J, et al. Immunotoxicity of the commercial polybrominated diphenyl ether mixture DE-71 in ranch mink (Mustela vison) [J]. Environmental Toxicology and Chemistry, 2007, 26(5): 988-997
    Fernie K J, Mayne G, Laird Shutt J, et al. Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDEs [J]. Environmental Pollution, 2005, 138(3): 485-493
    Lv Q Y, Wan B, Guo L H, et al. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: Apoptosis and immune cell dysfunction [J]. Chemosphere, 2015, 120: 621-630
    Hennigar S R, Myers J L, Tagliaferro A R. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro [J]. Experimental Biology and Medicine, 2012, 237(4): 429-434
    Rajput I R, Xiao Z Y, Sun Y J, et al. Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response [J]. Aquatic Toxicology, 2018, 203: 1-9
    Huang Y, Rajput I R, Sanganyado E, et al. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitro study [J]. Chemosphere, 2020, 254: 126717
    Subbaramaiah K, Cole P A, Dannenberg A J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms [J]. Cancer Research, 2002, 62(9): 2522-2530
    Ricciotti E, FitzGerald G A. Prostaglandins and inflammation [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(5): 986-1000
  • 加载中
计量
  • 文章访问数:  4404
  • HTML全文浏览数:  4404
  • PDF下载数:  106
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-08-05
王鑫格, 李娜, 韩颖楠, 马梅, 吴兴华, 李翀, 王殿常. 二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J]. 生态毒理学报, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
引用本文: 王鑫格, 李娜, 韩颖楠, 马梅, 吴兴华, 李翀, 王殿常. 二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J]. 生态毒理学报, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
Wang Xinge, Li Na, Han Yingnan, Ma Mei, Wu Xinghua, Li Chong, Wang Dianchang. Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants[J]. Asian journal of ecotoxicology, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003
Citation: Wang Xinge, Li Na, Han Yingnan, Ma Mei, Wu Xinghua, Li Chong, Wang Dianchang. Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants[J]. Asian journal of ecotoxicology, 2023, 18(1): 138-148. doi: 10.7524/AJE.1673-5897.20220805003

二噁英及类二噁英污染物致免疫毒性作用机制研究进展

    通讯作者: 李娜, E-mail: lina@rcees.ac.cn
    作者简介: 王鑫格(1997—),女,博士研究生,研究方向为水生态毒理学,E-mail:xgwang_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;
  • 2. 中国科学院生态环境研究中心, 环境水质学国家重点实验室, 北京 100085;
  • 3. 工业废水无害化与资源化国家工程研究中心, 北京 100085;
  • 4. 中国科学院大学, 北京 100049;
  • 5. 中国长江三峡集团公司, 北京 100038
基金项目:

国家重点研发计划课题(2021YFC3200803);中国长江三峡集团有限公司科研项目(201903139);场地土壤环境基准推导及表征关键技术(2019YFC1804604)

摘要: 二噁英是芳烃受体(aryl hydrocarbon receptor, AHR)的高效外源配体,已知可以通过AHR发挥免疫毒性作用。经典的AHR毒性通路是指AHR由配体激活后进入细胞核,并与芳烃受体核转运蛋白(AHR nuclear translocator, ARNT)形成复合物,诱导二噁英反应元件(dioxin response element, DRE)控制的下游免疫相关基因的表达。但新的研究表明二噁英诱导免疫毒性还存在多种非经典的AHR通路,即激活后的AHR与其他信号通路(如炎症反应、细胞周期和信号转导)中的关键蛋白之间发生相互串扰,影响细胞功能。该过程中,AHR直接或以AHR-ARNT复合物的形式与其他转录因子相互作用,协同募集到共识或非共识DRE位点并与之结合,进而影响关键分子的转录和表达。目前已有许多与二噁英结构相似的物质被证明具有类二噁英的AHR激活活性,包括部分多氯联苯、多环芳烃和多溴联苯醚等,被称为类二噁英物质(dioxin-like compounds, DLCs)。DLCs可以通过激活AHR影响免疫系统,但一些研究表明,部分DLCs的免疫毒性可通过非AHR依赖的途径产生,这些途径可能包括导致细胞氧化应激、影响细胞呼吸爆发反应、促进细胞凋亡和干扰线粒体功能等。总之,与二噁英相比,DLCs的免疫毒性作用机制并不清晰,还需要更为系统的研究。

English Abstract

参考文献 (88)

返回顶部

目录

/

返回文章
返回