手性药物的水环境行为、毒性效应及生态风险
Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk
-
摘要: 药物污染已经成为一个重要的环境问题,目前生产和使用的药物中大部分为手性药物,进入地表水环境后,2个对映异构体在生物降解和生态毒性等方面可能存在显著的差异。本文以8种手性药物为研究对象,系统综述了手性药物在水环境中的暴露特征和降解转化规律,分析其对不同生物靶点的毒性效应和机理,探讨了其对水生态系统的潜在风险。结果表明,8种手性药物在国内外地表水中的检出浓度达到μg·L-1水平。手性药物在地表水环境中的对映体构成受药物种类、环境条件和时间的影响;布洛芬、普萘洛尔等差异显著的手性药物可以作为污染源示踪的特征污染物;不同污水处理工艺的对映体选择性也有较大差异,导致污水处理厂出水中手性药物对映体分数(enantiomer fraction, EF)值不同。由于手性药物在生物体内发生手性代谢和手性转化,导致体外毒性实验与体内毒性效果差异很大,手性药物在不同水生生物类群体内的受体或生物利用率有所差异,从而表现出不同的立体选择性。基于外消旋体的生态风险评估研究表明,目前布洛芬、卡马西平和萘普生等手性药物对水生生物具有潜在的风险,而不同对映体对水生生物的毒性存在一定差异。因此,有必要将手性药物的2种对映体当作2种独立的药品,进行更为精确的风险评估。Abstract: Pharmaceutical pollution has become an important environmental problem. Most of the currently produced and used pharmaceuticals are chiral, and there might be significant differences between the two enantiomers in terms of biodegradation and ecotoxicity when they enter the surface water environment. In this paper, the enantiomeric isomers were taken as the targets. We systematically reviewed the exposure characteristics and degradation transformation patterns of eight chiral pharmaceuticals in the aquatic environment, analyzed their toxic effects and mechanisms on different biological targets, and explored their potential risks to the aquatic ecosystem. The results showed that eight chiral pharmaceuticals were detected in surface water at μg·L-1 levels at home and abroad. The enantiomeric composition of chiral pharmaceuticals in surface water environment was influenced by pharmaceutical type, environmental conditions and time; significantly different chiral pharmaceuticals such as ibuprofen and propranolol could be used as characteristic pollutants for tracing pollution sources; the enantiomeric selectivity of different wastewater treatment processes also differed significantly, resulting in different enantiomer fraction (EF) values of chiral pharmaceuticals in wastewater treatment plant effluents. Chiral pharmaceuticals undergo chiral metabolism and chiral transformation in organisms, which could result in significant differences between in vitro toxicity assays and in vivo toxicity effects. Also, the receptors or bioavailability of chiral pharmaceuticals vary in different aquatic taxa, thus exhibit different stereoselectivity. Ecological risk assessment studies based on racemization have shown that chiral pharmaceuticals such as ibuprofen, carbamazepine and naproxen are currently a potential risk to aquatic organisms, while the toxicity of different enantiomers to aquatic organisms is different. Therefore, it is necessary to treat the two enantiomers of chiral pharmaceuticals as two separate pharmaceuticals for a more precise risk assessment.
-
Key words:
- new pollutants /
- enantiomers /
- stereoselectivity /
- ibuprofen /
- ecological risk
-
-
Wong C S. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants [J]. Analytical and Bioanalytical Chemistry, 2006, 386(3): 544-558 Zhu W T, Dang Z H, Qiu J, et al. Stereoselective toxicokinetics and tissue distribution of ethofumesate in rabbits [J]. Chirality, 2007, 19(8): 632-637 Sharma B. Nature of chiral drugs and their occurrence in environment [J]. Journal of Xenobiotics, 2014, 4(1): 14-19 Sanganyado E, Lu Z J, Fu Q G, et al. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes [J]. Water Research, 2017, 124: 527-542 刘瑞霞, 李佳熹, 刘晓玲. 环境介质中手性药物对映体分离分析及环境行为研究进展[J]. 环境工程学报, 2017, 11(6): 3341-3351 Liu R X, Li J X, Liu X L. Research progress on separation, analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix [J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3341-3351 (in Chinese)
尹立娜, 王斌, 马瑞雪, 等. 手性PPCPs环境行为与效应的对映体选择性[J]. 化学进展, 2016, 28(5): 744-753 Yin L N, Wang B, Ma R X, et al. Enantioselective environmental behavior and effect of chiral PPCPs [J]. Progress in Chemistry, 2016, 28(5): 744-753 (in Chinese)
Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system [J]. Environment International, 2020, 136: 105454 褚莹倩, 陈溪, 张晓林, 等. 中国地表水环境中药物与个人护理品生态风险评价的研究进展[J]. 生态毒理学报, 2021, 16(4): 80-92 Chu Y Q, Chen X, Zhang X L, et al. Ecological risk assessment of pharmaceutical and personal care products in the surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2021, 16(4): 80-92 (in Chinese)
Rudolf B H, Thomas P, Müller Markus D. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater [J]. Environmental Science & Technology, 1999, 33(15): 2529-2535 Petrie B, Moffat C F. Occurrence and fate of chiral and achiral drugs in estuarine water—A case study of the Clyde Estuary, Scotland [J]. Environmental Science Processes & Impacts, 2022, 24(4): 547-556 Sanganyado E, Fu Q G, Gan J. Enantiomeric selectivity in adsorption of chiral β-blockers on sludge [J]. Environmental Pollution, 2016, 214: 787-794 Roberts P H, Thomas K V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne Catchment [J]. The Science of the Total Environment, 2006, 356(1-3): 143-153 Stafiej A, Pyrzynska K, Regan F. Determination of anti-inflammatory drugs and estrogens in water by HPLC with UV detection [J]. Journal of Separation Science, 2007, 30(7): 985-991 Bradley P M, Journey C A, Romanok K M, et al. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in U.S. streams [J]. Environmental Science & Technology, 2017, 51(9): 4792-4802 Can Guven E, Bolat D, Gedik K, et al. Chiral pollutants and their significance in the environment[J]. Pamukkale University Journal of Engineering Sciences, 2016, 22(6): 486-496 Xu C Y, Lin X M, Yin S S, et al. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants [J]. Environmental Pollution, 2018, 243(Pt B): 1274-1286 Maia A, Ribeiro A R, Castro P, et al. Chiral analysis of pesticides and drugs of environmental concern: Biodegradation and enantiomeric fraction [J]. Symmetry, 2017, 9: 196 Tom H, Karin W, Ross N. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis [J]. Environmental Science & Technology, 2000, 34(1): 218-220 Ma R X, Qu H, Wang B, et al. Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation [J]. Environment International, 2020, 138: 105657 Kasprzyk-Hordern B, Baker D R. Enantiomeric profiling of chiral drugs in wastewater and receiving waters [J]. Environmental Science & Technology, 2012, 46(3): 1681-1691 Khan S J, Wang L L, Hashim N H, et al. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow [J]. Chirality, 2014, 26(11): 739-746 Suzuki T, Kosugi Y, Hosaka M, et al. Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment [J]. Environmental Toxicology and Chemistry, 2014, 33(12): 2671-2678 Xu Z Q, Du P, Li K Y, et al. Tracing methamphetamine and amphetamine sources in wastewater and receiving waters via concentration and enantiomeric profiling [J]. The Science of the Total Environment, 2017, 601-602: 159-166 Camacho-Muñoz D, Kasprzyk-Hordern B. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection [J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 9085-9104 Ma R X, Qu H, Wang B, et al. Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2019, 174: 83-91 Bagnall J P, Evans S E, Wort M T, et al. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level [J]. Journal of Chromatography A, 2012, 1249: 115-129 Fono L J, Kolodziej E P, Sedlak D L. Attenuation of wastewater-derived contaminants in an effluent-dominated river [J]. Environmental Science & Technology, 2006, 40(23): 7257-7262 Yuan X C, Li X H, Guo P, et al. Simultaneous enantiomeric analysis of chiral non-steroidal anti-inflammatory drugs in water, river sediment, and sludge using chiral liquid chromatography-tandem mass spectrometry [J]. Analytical Methods, 2018, 10(36): 4404-4413 Huang Q X, Wang Z F, Wang C W, et al. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China [J]. Environmental Science and Pollution Research International, 2013, 20(12): 8890-8899 潘宇, 李冰, 姜春旭, 等. 水液相环境下布洛芬分子手性对映体转变的机理[J]. 复旦学报(自然科学版), 2019, 58(6): 784-792 Pan Y, Li B, Jiang C X, et al. Mechanism of chiral enantiomer transition of ibuprofen molecules in water/liquid phase environment [J]. Journal of Fudan University (Natural Science), 2019, 58(6): 784-792 (in Chinese) Barclay V K, Tyrefors N L, Johansson I M, et al. Chiral analysis of metoprolol and two of its metabolites, α-hydroxymetoprolol and deaminated metoprolol, in wastewater using liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2012, 1269: 208-217 Fono L J, Sedlak D L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters [J]. Environmental Science & Technology, 2005, 39(23): 9244-9252 Matamoros V, Uggetti E, García J, et al. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study [J]. Journal of Hazardous Materials, 2016, 301: 197-205 Moreira I S, Ribeiro A R, Afonso C M, et al. Enantioselective biodegradation of fluoxetine by the bacterial strain Labrys portucalensis F11 [J]. Chemosphere, 2014, 111: 103-111 Ribeiro A R, Afonso C, Castro P, et al. Enantioselective HPLC analysis and biodegradation of atenolol, metoprolol and fluoxetine [J]. Environmental Chemistry Letters, 2013, 11(1): 83-90 Evans S E, Davies P, Lubben A, et al. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry [J]. Analytica Chimica Acta, 2015, 882: 112-126 Matamoros V, Rodríguez Y, Albaigés J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities [J]. Water Research, 2016, 88: 777-785 Hashim N H, Khan S J. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples [J]. Journal of Chromatography A, 2011, 1218(29): 4746-4754 Thomason M J, Rhys-Williams W, Hung Y F, et al. A mechanistic investigation of the microbial chiral inversion of 2-phenylpropionic acid by Verticillium lecanii [J]. Chirality, 1997, 9(3): 254-260 Huang Q X, Zhang K, Wang Z F, et al. Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2012, 403(6): 1751-1760 Castrignanò E, Lubben A, Kasprzyk-Hordern B. Enantiomeric profiling of chiral drug biomarkers in wastewater with the usage of chiral liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2016, 1438: 84-99 Castrignanò E, Yang Z G, Bade R, et al. Enantiomeric profiling of chiral illicit drugs in a pan-European study [J]. Water Research, 2018, 130: 151-160 Estévez-Danta A, Montes R, Bijlsma L, et al. Source identification of amphetamine-like stimulants in Spanish wastewater through enantiomeric profiling [J]. Water Research, 2021, 206: 117719 Kasprzyk-Hordern B, Kondakal V V R, Baker D R. Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2010, 1217(27): 4575-4586 MacLeod S L, Sudhir P, Wong C S. Stereoisomer analysis of wastewater-derived beta-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2007, 1170(1-2): 23-33 Caballo C, Sicilia M D, Rubio S. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry [J]. Talanta, 2015, 134: 325-332 Vazquez-Roig P, Kasprzyk-Hordern B, Blasco C, et al. Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain) [J]. The Science of the Total Environment, 2014, 494-495: 49-57 Duan L, Zhang Y Z, Wang B, et al. Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China [J]. Environmental Pollution, 2018, 239: 473-482 Archer E, Castrignanò E, Kasprzyk-Hordern B, et al. Wastewater-based epidemiology and enantiomeric profiling for drugs of abuse in South African wastewaters [J]. The Science of the Total Environment, 2018, 625: 792-800 Matamoros V, Arias C, Brix H, et al. Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter [J]. Environmental Science & Technology, 2007, 41(23): 8171-8177 Matamoros V, Bayona J M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands [J]. Environmental Science & Technology, 2006, 40(18): 5811-5816 Matamoros V, Caselles-Osorio A, García J, et al. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment [J]. The Science of the Total Environment, 2008, 394(1): 171-176 Matamoros V, Hijosa M, Bayona J M. Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen [J]. Chemosphere, 2009, 75(2): 200-205 梅泽民, 王佐成, 赵衍辉, 等. 水环境下布洛芬分子的手性转变机理[J]. 吉林大学学报(理学版), 2015, 53(2): 331-339 Mei Z M, Wang Z C, Zhao Y H, et al. Chiral shift mechanism of ibuprofen molecule in water [J]. Journal of Jilin University (Science Edition), 2015, 53(2): 331-339 (in Chinese) Selke S, Hühnerfuss H. Enantioselective transformation of the betablocker propranolol in the aquatic environment[J]. Organohalogen Compounds, 2011, 73: 190-193 Oravec M, Simek Z, Holoubek I. The effect of humic acid and ash on enantiomeric fraction change of chiral pollutants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359(1-3): 60-65 Hari A C, Paruchuri R A, Sabatini D A, et al. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material [J]. Environmental Science & Technology, 2005, 39(8): 2592-2598 Wedyan M, Preston M R. Isomer-selective adsorption of amino acids by components of natural sediments [J]. Environmental Science & Technology, 2005, 39(7): 2115-2119 Belden J B, Maul J D, Lydy M J. Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter [J]. Chemosphere, 2007, 66(8): 1390-1395 孙璐, 杨亚楠, 严静. 手性药物的立体选择性药物动力学[J]. 中国药物化学杂志, 2009, 19(6): 498-501 Sun L, Yang Y N, Yan J. Stereoselectivity pharmacokinetics of chiral drugs [J]. Chinese Journal of Medicinal Chemistry, 2009, 19(6): 498-501 (in Chinese)
Lu H. Stereoselectivity in drug metabolism [J]. Expert Opinion on Drug Metabolism & Toxicology, 2007, 3(2): 149-158 Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality [J]. Chemical Society Reviews, 2010, 39(11): 4466-4503 Ariëns E J. QSAR methods and stereoselectivity in action [J]. Progress in Clinical and Biological Research, 1989, 291: 3-6 Song Y, Chai T T, Yin Z Q, et al. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics [J]. Environmental Pollution, 2018, 241: 730-739 Stanley J K, Ramirez A J, Chambliss C K, et al. Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate [J]. Chemosphere, 2007, 69(1): 9-16 池剑. β肾上腺受体阻滞剂对模式鱼的毒性效应研究[D]. 杭州: 浙江工业大学, 2012: 76-77 Chi J. Toxic effects of beta-adrenergic receptor antagonist on the mode fish [D]. Hangzhou: Zhejiang University of Technology, 2012: 76 -77 (in Chinese)
De Andrés F, Castañeda G, Ríos A. Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances [J]. Chirality, 2009, 21(8): 751-759 Stanley J K, Ramirez A J, Mottaleb M, et al. Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1780-1786 Grabarczyk Ł, Mulkiewicz E, Stolte S, et al. Ecotoxicity screening evaluation of selected pharmaceuticals and their transformation products towards various organisms [J]. Environmental Science and Pollution Research, 2020, 27(21): 26103-26114 Neale P A, Branch A, Khan S J, et al. Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery [J]. The Science of the Total Environment, 2019, 694: 133659 Wang F, Wang B, Qu H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 263(Pt B): 114593 Andrés-Costa M J, Proctor K, Sabatini M T, et al. Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance [J]. Scientific Reports, 2017, 7(1): 15777 Sidebotham D A, Schug S A. Stereochemistry in anaesthesia [J]. Clinical and Experimental Pharmacology & Physiology, 1997, 24(2): 126-130 Ali I, Aboul-Enein H Y, Ghanem A. Enantioselective toxicity and carcinogenesis [J]. Current Pharmaceutical Analysis, 2004, 1(1): 109-125 向瑾, 余勤, 梁茂植, 等. 布洛芬对映体在健康人体的药动学研究[J]. 四川大学学报(医学版), 2010, 41(1): 176-178 Janjikhel R K, Douglas Bricker J, Borochovitz D, et al. Stereoselective disposition of sustained release microspheres of ibuprofen enantiomers in rats: Ⅱ. Acute gastrointestinal toxicity [J]. Drug Delivery, 1999, 6(3): 163-170 Lee E J, Williams K, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man [J]. British Journal of Clinical Pharmacology, 1985, 19(5): 669-674 刘扬. 手性药物布洛芬药物动力学研究[D]. 哈尔滨: 黑龙江中医药大学, 2009: 45-46 Liu Y. Studies on pharmacokinetics of chiral drug ibuprofen [D]. Harbin: Heilongjiang University of Chinese Medicine, 2009: 45 -46 (in Chinese)
林文辉, 崔福德, 吴斌, 等. 布洛芬离体肝代谢中对映体间的相互作用[J]. 沈阳药科大学学报, 2005, 22(1): 1-4 Lin W H, Cui F D, Wu B, et al. Interaction of the ibuprofen enantiomers during the chiral inversion in vitro [J]. Journal of Shenyang Pharmaceutical University, 2005, 22(1): 1-4 (in Chinese)
Nakamura Y, Yamaguchi T, Takahashi S, et al. Optical isomerization mechanism of r-(-)-hydrotropic acid-derivatives [J]. Journal of Pharmacobio-Dynamics, 1981, 4(2): S1-S1 Chen C S, Shieh W R, Lu P H, et al. Metabolic stereoisomeric inversion of ibuprofen in mammals [J]. Biochimica et Biophysica Acta, 1991, 1078(3): 411-417 刘娜, 金小伟, 王业耀, 等. 我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查[J]. 生态毒理学报, 2015, 10(6): 1-12 Liu N, Jin X W, Wang Y Y, et al. Pharmaceuticals and personal care products (PPCPs) caused reproductive toxicity in surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 1-12 (in Chinese)
Sui Q, Wang B, Zhao W T, et al. Identification of priority pharmaceuticals in the water environment of China [J]. Chemosphere, 2012, 89(3): 280-286 Zhao J L, Ying G G, Liu Y S, et al. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China [J]. Environmental Toxicology and Chemistry, 2010, 29(6): 1377-1384 Wang L, Ying G G, Zhao J L, et al. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of North China [J]. The Science of the Total Environment, 2010, 408(16): 3139-3147 Rivera-Jaimes J A, Postigo C, Melgoza-Alemán R M, et al. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment [J]. The Science of the Total Environment, 2018, 613-614: 1263-1274 Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways [J]. The Science of the Total Environment, 2019, 690: 683-695 Stuer-Lauridsen F, Birkved M, Hansen L P, et al. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use [J]. Chemosphere, 2000, 40(7): 783-793 di Lorenzo T, Castaño-Sánchez A, di Marzio W D, et al. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain [J]. Chemosphere, 2019, 220: 227-236 Pusceddu F H, Choueri R B, Pereira C D S, et al. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints [J]. Environmental Pollution, 2018, 232: 274-283 刘维屏, 徐超, 周珊珊. 手性污染物与环境安全[J]. 环境化学, 2006, 25(3): 247-251 Liu W P, Xu C, Zhou S S. Chiral pollutants and environmental safety [J]. Environmental Chemistry, 2006, 25(3): 247-251 (in Chinese)
唐梦龄, 王丹, 傅柳松, 等. 手性农药毒性机制的对映体选择性[J]. 农药学学报, 2011, 13(4): 335-340 Tang M L, Wang D, Fu L S, et al. Enantioselectivity on toxic mechanisms of chiral pesticides [J]. Chinese Journal of Pesticide Science, 2011, 13(4): 335-340 (in Chinese)
Ye J, Zhao M R, Liu J, et al. Enantioselectivity in environmental risk assessment of modern chiral pesticides [J]. Environmental Pollution, 2010, 158(7): 2371-2383 Stanley J K, Brooks B W. Perspectives on ecological risk assessment of chiral compounds [J]. Integrated Environmental Assessment and Management, 2009, 5(3): 364-373 -

计量
- 文章访问数: 3118
- HTML全文浏览数: 3118
- PDF下载数: 99
- 施引文献: 0