手性药物的水环境行为、毒性效应及生态风险

葛平, 刘娜, 金小伟, 王业耀. 手性药物的水环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
引用本文: 葛平, 刘娜, 金小伟, 王业耀. 手性药物的水环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
Ge Ping, Liu Na, Jin Xiaowei, Wang Yeyao. Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk[J]. Asian journal of ecotoxicology, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
Citation: Ge Ping, Liu Na, Jin Xiaowei, Wang Yeyao. Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk[J]. Asian journal of ecotoxicology, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004

手性药物的水环境行为、毒性效应及生态风险

    作者简介: 葛平(1999—),女,硕士研究生,研究方向为生态毒理及风险评价,E-mail:geping136@163.com
    通讯作者: 刘娜, E-mail: liuna_1231@163.com 王业耀, E-mail: yeyaowang@163.com
  • 基金项目:

    国家自然科学基金资助项目(41807400)

  • 中图分类号: X171.5

Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk

    Corresponding authors: Liu Na, liuna_1231@163.com ;  Wang Yeyao, yeyaowang@163.com
  • Fund Project:
  • 摘要: 药物污染已经成为一个重要的环境问题,目前生产和使用的药物中大部分为手性药物,进入地表水环境后,2个对映异构体在生物降解和生态毒性等方面可能存在显著的差异。本文以8种手性药物为研究对象,系统综述了手性药物在水环境中的暴露特征和降解转化规律,分析其对不同生物靶点的毒性效应和机理,探讨了其对水生态系统的潜在风险。结果表明,8种手性药物在国内外地表水中的检出浓度达到μg·L-1水平。手性药物在地表水环境中的对映体构成受药物种类、环境条件和时间的影响;布洛芬、普萘洛尔等差异显著的手性药物可以作为污染源示踪的特征污染物;不同污水处理工艺的对映体选择性也有较大差异,导致污水处理厂出水中手性药物对映体分数(enantiomer fraction, EF)值不同。由于手性药物在生物体内发生手性代谢和手性转化,导致体外毒性实验与体内毒性效果差异很大,手性药物在不同水生生物类群体内的受体或生物利用率有所差异,从而表现出不同的立体选择性。基于外消旋体的生态风险评估研究表明,目前布洛芬、卡马西平和萘普生等手性药物对水生生物具有潜在的风险,而不同对映体对水生生物的毒性存在一定差异。因此,有必要将手性药物的2种对映体当作2种独立的药品,进行更为精确的风险评估。
  • 加载中
  • Wong C S. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants [J]. Analytical and Bioanalytical Chemistry, 2006, 386(3): 544-558
    Zhu W T, Dang Z H, Qiu J, et al. Stereoselective toxicokinetics and tissue distribution of ethofumesate in rabbits [J]. Chirality, 2007, 19(8): 632-637
    Sharma B. Nature of chiral drugs and their occurrence in environment [J]. Journal of Xenobiotics, 2014, 4(1): 14-19
    Sanganyado E, Lu Z J, Fu Q G, et al. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes [J]. Water Research, 2017, 124: 527-542
    刘瑞霞, 李佳熹, 刘晓玲. 环境介质中手性药物对映体分离分析及环境行为研究进展[J]. 环境工程学报, 2017, 11(6): 3341-3351

    Liu R X, Li J X, Liu X L. Research progress on separation, analysis and environmental behavior of chiral pharmaceutical enantiomers in environmental matrix [J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3341-3351 (in Chinese)

    尹立娜, 王斌, 马瑞雪, 等. 手性PPCPs环境行为与效应的对映体选择性[J]. 化学进展, 2016, 28(5): 744-753

    Yin L N, Wang B, Ma R X, et al. Enantioselective environmental behavior and effect of chiral PPCPs [J]. Progress in Chemistry, 2016, 28(5): 744-753 (in Chinese)

    Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system [J]. Environment International, 2020, 136: 105454
    褚莹倩, 陈溪, 张晓林, 等. 中国地表水环境中药物与个人护理品生态风险评价的研究进展[J]. 生态毒理学报, 2021, 16(4): 80-92

    Chu Y Q, Chen X, Zhang X L, et al. Ecological risk assessment of pharmaceutical and personal care products in the surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2021, 16(4): 80-92 (in Chinese)

    Rudolf B H, Thomas P, Müller Markus D. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater [J]. Environmental Science & Technology, 1999, 33(15): 2529-2535
    Petrie B, Moffat C F. Occurrence and fate of chiral and achiral drugs in estuarine water—A case study of the Clyde Estuary, Scotland [J]. Environmental Science Processes & Impacts, 2022, 24(4): 547-556
    Sanganyado E, Fu Q G, Gan J. Enantiomeric selectivity in adsorption of chiral β-blockers on sludge [J]. Environmental Pollution, 2016, 214: 787-794
    Roberts P H, Thomas K V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne Catchment [J]. The Science of the Total Environment, 2006, 356(1-3): 143-153
    Stafiej A, Pyrzynska K, Regan F. Determination of anti-inflammatory drugs and estrogens in water by HPLC with UV detection [J]. Journal of Separation Science, 2007, 30(7): 985-991
    Bradley P M, Journey C A, Romanok K M, et al. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in U.S. streams [J]. Environmental Science & Technology, 2017, 51(9): 4792-4802
    Can Guven E, Bolat D, Gedik K, et al. Chiral pollutants and their significance in the environment[J]. Pamukkale University Journal of Engineering Sciences, 2016, 22(6): 486-496
    Xu C Y, Lin X M, Yin S S, et al. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants [J]. Environmental Pollution, 2018, 243(Pt B): 1274-1286
    Maia A, Ribeiro A R, Castro P, et al. Chiral analysis of pesticides and drugs of environmental concern: Biodegradation and enantiomeric fraction [J]. Symmetry, 2017, 9: 196
    Tom H, Karin W, Ross N. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis [J]. Environmental Science & Technology, 2000, 34(1): 218-220
    Ma R X, Qu H, Wang B, et al. Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation [J]. Environment International, 2020, 138: 105657
    Kasprzyk-Hordern B, Baker D R. Enantiomeric profiling of chiral drugs in wastewater and receiving waters [J]. Environmental Science & Technology, 2012, 46(3): 1681-1691
    Khan S J, Wang L L, Hashim N H, et al. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow [J]. Chirality, 2014, 26(11): 739-746
    Suzuki T, Kosugi Y, Hosaka M, et al. Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment [J]. Environmental Toxicology and Chemistry, 2014, 33(12): 2671-2678
    Xu Z Q, Du P, Li K Y, et al. Tracing methamphetamine and amphetamine sources in wastewater and receiving waters via concentration and enantiomeric profiling [J]. The Science of the Total Environment, 2017, 601-602: 159-166
    Camacho-Muñoz D, Kasprzyk-Hordern B. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection [J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 9085-9104
    Ma R X, Qu H, Wang B, et al. Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2019, 174: 83-91
    Bagnall J P, Evans S E, Wort M T, et al. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level [J]. Journal of Chromatography A, 2012, 1249: 115-129
    Fono L J, Kolodziej E P, Sedlak D L. Attenuation of wastewater-derived contaminants in an effluent-dominated river [J]. Environmental Science & Technology, 2006, 40(23): 7257-7262
    Yuan X C, Li X H, Guo P, et al. Simultaneous enantiomeric analysis of chiral non-steroidal anti-inflammatory drugs in water, river sediment, and sludge using chiral liquid chromatography-tandem mass spectrometry [J]. Analytical Methods, 2018, 10(36): 4404-4413
    Huang Q X, Wang Z F, Wang C W, et al. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China [J]. Environmental Science and Pollution Research International, 2013, 20(12): 8890-8899
    潘宇, 李冰, 姜春旭, 等. 水液相环境下布洛芬分子手性对映体转变的机理[J]. 复旦学报(自然科学版), 2019, 58(6): 784-792 Pan Y, Li B, Jiang C X, et al. Mechanism of chiral enantiomer transition of ibuprofen molecules in water/liquid phase environment [J]. Journal of Fudan University (Natural Science), 2019, 58(6): 784-792 (in Chinese)
    Barclay V K, Tyrefors N L, Johansson I M, et al. Chiral analysis of metoprolol and two of its metabolites, α-hydroxymetoprolol and deaminated metoprolol, in wastewater using liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2012, 1269: 208-217
    Fono L J, Sedlak D L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters [J]. Environmental Science & Technology, 2005, 39(23): 9244-9252
    Matamoros V, Uggetti E, García J, et al. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study [J]. Journal of Hazardous Materials, 2016, 301: 197-205
    Moreira I S, Ribeiro A R, Afonso C M, et al. Enantioselective biodegradation of fluoxetine by the bacterial strain Labrys portucalensis F11 [J]. Chemosphere, 2014, 111: 103-111
    Ribeiro A R, Afonso C, Castro P, et al. Enantioselective HPLC analysis and biodegradation of atenolol, metoprolol and fluoxetine [J]. Environmental Chemistry Letters, 2013, 11(1): 83-90
    Evans S E, Davies P, Lubben A, et al. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry [J]. Analytica Chimica Acta, 2015, 882: 112-126
    Matamoros V, Rodríguez Y, Albaigés J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities [J]. Water Research, 2016, 88: 777-785
    Hashim N H, Khan S J. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples [J]. Journal of Chromatography A, 2011, 1218(29): 4746-4754
    Thomason M J, Rhys-Williams W, Hung Y F, et al. A mechanistic investigation of the microbial chiral inversion of 2-phenylpropionic acid by Verticillium lecanii [J]. Chirality, 1997, 9(3): 254-260
    Huang Q X, Zhang K, Wang Z F, et al. Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2012, 403(6): 1751-1760
    Castrignanò E, Lubben A, Kasprzyk-Hordern B. Enantiomeric profiling of chiral drug biomarkers in wastewater with the usage of chiral liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2016, 1438: 84-99
    Castrignanò E, Yang Z G, Bade R, et al. Enantiomeric profiling of chiral illicit drugs in a pan-European study [J]. Water Research, 2018, 130: 151-160
    Estévez-Danta A, Montes R, Bijlsma L, et al. Source identification of amphetamine-like stimulants in Spanish wastewater through enantiomeric profiling [J]. Water Research, 2021, 206: 117719
    Kasprzyk-Hordern B, Kondakal V V R, Baker D R. Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2010, 1217(27): 4575-4586
    MacLeod S L, Sudhir P, Wong C S. Stereoisomer analysis of wastewater-derived beta-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2007, 1170(1-2): 23-33
    Caballo C, Sicilia M D, Rubio S. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry [J]. Talanta, 2015, 134: 325-332
    Vazquez-Roig P, Kasprzyk-Hordern B, Blasco C, et al. Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain) [J]. The Science of the Total Environment, 2014, 494-495: 49-57
    Duan L, Zhang Y Z, Wang B, et al. Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China [J]. Environmental Pollution, 2018, 239: 473-482
    Archer E, Castrignanò E, Kasprzyk-Hordern B, et al. Wastewater-based epidemiology and enantiomeric profiling for drugs of abuse in South African wastewaters [J]. The Science of the Total Environment, 2018, 625: 792-800
    Matamoros V, Arias C, Brix H, et al. Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter [J]. Environmental Science & Technology, 2007, 41(23): 8171-8177
    Matamoros V, Bayona J M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands [J]. Environmental Science & Technology, 2006, 40(18): 5811-5816
    Matamoros V, Caselles-Osorio A, García J, et al. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment [J]. The Science of the Total Environment, 2008, 394(1): 171-176
    Matamoros V, Hijosa M, Bayona J M. Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen [J]. Chemosphere, 2009, 75(2): 200-205
    梅泽民, 王佐成, 赵衍辉, 等. 水环境下布洛芬分子的手性转变机理[J]. 吉林大学学报(理学版), 2015, 53(2): 331-339 Mei Z M, Wang Z C, Zhao Y H, et al. Chiral shift mechanism of ibuprofen molecule in water [J]. Journal of Jilin University (Science Edition), 2015, 53(2): 331-339 (in Chinese)
    Selke S, Hühnerfuss H. Enantioselective transformation of the betablocker propranolol in the aquatic environment[J]. Organohalogen Compounds, 2011, 73: 190-193
    Oravec M, Simek Z, Holoubek I. The effect of humic acid and ash on enantiomeric fraction change of chiral pollutants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359(1-3): 60-65
    Hari A C, Paruchuri R A, Sabatini D A, et al. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material [J]. Environmental Science & Technology, 2005, 39(8): 2592-2598
    Wedyan M, Preston M R. Isomer-selective adsorption of amino acids by components of natural sediments [J]. Environmental Science & Technology, 2005, 39(7): 2115-2119
    Belden J B, Maul J D, Lydy M J. Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter [J]. Chemosphere, 2007, 66(8): 1390-1395
    孙璐, 杨亚楠, 严静. 手性药物的立体选择性药物动力学[J]. 中国药物化学杂志, 2009, 19(6): 498-501

    Sun L, Yang Y N, Yan J. Stereoselectivity pharmacokinetics of chiral drugs [J]. Chinese Journal of Medicinal Chemistry, 2009, 19(6): 498-501 (in Chinese)

    Lu H. Stereoselectivity in drug metabolism [J]. Expert Opinion on Drug Metabolism & Toxicology, 2007, 3(2): 149-158
    Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality [J]. Chemical Society Reviews, 2010, 39(11): 4466-4503
    Ariëns E J. QSAR methods and stereoselectivity in action [J]. Progress in Clinical and Biological Research, 1989, 291: 3-6
    Song Y, Chai T T, Yin Z Q, et al. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics [J]. Environmental Pollution, 2018, 241: 730-739
    Stanley J K, Ramirez A J, Chambliss C K, et al. Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate [J]. Chemosphere, 2007, 69(1): 9-16
    池剑. β肾上腺受体阻滞剂对模式鱼的毒性效应研究[D]. 杭州: 浙江工业大学, 2012: 76-77 Chi J. Toxic effects of beta-adrenergic receptor antagonist on the mode fish [D]. Hangzhou: Zhejiang University of Technology, 2012: 76

    -77 (in Chinese)

    De Andrés F, Castañeda G, Ríos A. Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances [J]. Chirality, 2009, 21(8): 751-759
    Stanley J K, Ramirez A J, Mottaleb M, et al. Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1780-1786
    Grabarczyk Ł, Mulkiewicz E, Stolte S, et al. Ecotoxicity screening evaluation of selected pharmaceuticals and their transformation products towards various organisms [J]. Environmental Science and Pollution Research, 2020, 27(21): 26103-26114
    Neale P A, Branch A, Khan S J, et al. Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery [J]. The Science of the Total Environment, 2019, 694: 133659
    Wang F, Wang B, Qu H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 263(Pt B): 114593
    Andrés-Costa M J, Proctor K, Sabatini M T, et al. Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance [J]. Scientific Reports, 2017, 7(1): 15777
    Sidebotham D A, Schug S A. Stereochemistry in anaesthesia [J]. Clinical and Experimental Pharmacology & Physiology, 1997, 24(2): 126-130
    Ali I, Aboul-Enein H Y, Ghanem A. Enantioselective toxicity and carcinogenesis [J]. Current Pharmaceutical Analysis, 2004, 1(1): 109-125
    向瑾, 余勤, 梁茂植, 等. 布洛芬对映体在健康人体的药动学研究[J]. 四川大学学报(医学版), 2010, 41(1): 176-178
    Janjikhel R K, Douglas Bricker J, Borochovitz D, et al. Stereoselective disposition of sustained release microspheres of ibuprofen enantiomers in rats: Ⅱ. Acute gastrointestinal toxicity [J]. Drug Delivery, 1999, 6(3): 163-170
    Lee E J, Williams K, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man [J]. British Journal of Clinical Pharmacology, 1985, 19(5): 669-674
    刘扬. 手性药物布洛芬药物动力学研究[D]. 哈尔滨: 黑龙江中医药大学, 2009: 45-46 Liu Y. Studies on pharmacokinetics of chiral drug ibuprofen [D]. Harbin: Heilongjiang University of Chinese Medicine, 2009: 45

    -46 (in Chinese)

    林文辉, 崔福德, 吴斌, 等. 布洛芬离体肝代谢中对映体间的相互作用[J]. 沈阳药科大学学报, 2005, 22(1): 1-4

    Lin W H, Cui F D, Wu B, et al. Interaction of the ibuprofen enantiomers during the chiral inversion in vitro [J]. Journal of Shenyang Pharmaceutical University, 2005, 22(1): 1-4 (in Chinese)

    Nakamura Y, Yamaguchi T, Takahashi S, et al. Optical isomerization mechanism of r-(-)-hydrotropic acid-derivatives [J]. Journal of Pharmacobio-Dynamics, 1981, 4(2): S1-S1
    Chen C S, Shieh W R, Lu P H, et al. Metabolic stereoisomeric inversion of ibuprofen in mammals [J]. Biochimica et Biophysica Acta, 1991, 1078(3): 411-417
    刘娜, 金小伟, 王业耀, 等. 我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查[J]. 生态毒理学报, 2015, 10(6): 1-12

    Liu N, Jin X W, Wang Y Y, et al. Pharmaceuticals and personal care products (PPCPs) caused reproductive toxicity in surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 1-12 (in Chinese)

    Sui Q, Wang B, Zhao W T, et al. Identification of priority pharmaceuticals in the water environment of China [J]. Chemosphere, 2012, 89(3): 280-286
    Zhao J L, Ying G G, Liu Y S, et al. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China [J]. Environmental Toxicology and Chemistry, 2010, 29(6): 1377-1384
    Wang L, Ying G G, Zhao J L, et al. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of North China [J]. The Science of the Total Environment, 2010, 408(16): 3139-3147
    Rivera-Jaimes J A, Postigo C, Melgoza-Alemán R M, et al. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment [J]. The Science of the Total Environment, 2018, 613-614: 1263-1274
    Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways [J]. The Science of the Total Environment, 2019, 690: 683-695
    Stuer-Lauridsen F, Birkved M, Hansen L P, et al. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use [J]. Chemosphere, 2000, 40(7): 783-793
    di Lorenzo T, Castaño-Sánchez A, di Marzio W D, et al. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain [J]. Chemosphere, 2019, 220: 227-236
    Pusceddu F H, Choueri R B, Pereira C D S, et al. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints [J]. Environmental Pollution, 2018, 232: 274-283
    刘维屏, 徐超, 周珊珊. 手性污染物与环境安全[J]. 环境化学, 2006, 25(3): 247-251

    Liu W P, Xu C, Zhou S S. Chiral pollutants and environmental safety [J]. Environmental Chemistry, 2006, 25(3): 247-251 (in Chinese)

    唐梦龄, 王丹, 傅柳松, 等. 手性农药毒性机制的对映体选择性[J]. 农药学学报, 2011, 13(4): 335-340

    Tang M L, Wang D, Fu L S, et al. Enantioselectivity on toxic mechanisms of chiral pesticides [J]. Chinese Journal of Pesticide Science, 2011, 13(4): 335-340 (in Chinese)

    Ye J, Zhao M R, Liu J, et al. Enantioselectivity in environmental risk assessment of modern chiral pesticides [J]. Environmental Pollution, 2010, 158(7): 2371-2383
    Stanley J K, Brooks B W. Perspectives on ecological risk assessment of chiral compounds [J]. Integrated Environmental Assessment and Management, 2009, 5(3): 364-373
  • 加载中
计量
  • 文章访问数:  3118
  • HTML全文浏览数:  3118
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-14
葛平, 刘娜, 金小伟, 王业耀. 手性药物的水环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
引用本文: 葛平, 刘娜, 金小伟, 王业耀. 手性药物的水环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
Ge Ping, Liu Na, Jin Xiaowei, Wang Yeyao. Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk[J]. Asian journal of ecotoxicology, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004
Citation: Ge Ping, Liu Na, Jin Xiaowei, Wang Yeyao. Chiral Pharmaceuticals in Aquatic Environments: Occurrence, Fate, Toxicity, and Ecological Risk[J]. Asian journal of ecotoxicology, 2023, 18(1): 191-205. doi: 10.7524/AJE.1673-5897.20220914004

手性药物的水环境行为、毒性效应及生态风险

    通讯作者: 刘娜, E-mail: liuna_1231@163.com ;  王业耀, E-mail: yeyaowang@163.com
    作者简介: 葛平(1999—),女,硕士研究生,研究方向为生态毒理及风险评价,E-mail:geping136@163.com
  • 1. 中国环境科学研究院, 北京 100012;
  • 2. 中国环境监测总站, 北京 100012
基金项目:

国家自然科学基金资助项目(41807400)

摘要: 药物污染已经成为一个重要的环境问题,目前生产和使用的药物中大部分为手性药物,进入地表水环境后,2个对映异构体在生物降解和生态毒性等方面可能存在显著的差异。本文以8种手性药物为研究对象,系统综述了手性药物在水环境中的暴露特征和降解转化规律,分析其对不同生物靶点的毒性效应和机理,探讨了其对水生态系统的潜在风险。结果表明,8种手性药物在国内外地表水中的检出浓度达到μg·L-1水平。手性药物在地表水环境中的对映体构成受药物种类、环境条件和时间的影响;布洛芬、普萘洛尔等差异显著的手性药物可以作为污染源示踪的特征污染物;不同污水处理工艺的对映体选择性也有较大差异,导致污水处理厂出水中手性药物对映体分数(enantiomer fraction, EF)值不同。由于手性药物在生物体内发生手性代谢和手性转化,导致体外毒性实验与体内毒性效果差异很大,手性药物在不同水生生物类群体内的受体或生物利用率有所差异,从而表现出不同的立体选择性。基于外消旋体的生态风险评估研究表明,目前布洛芬、卡马西平和萘普生等手性药物对水生生物具有潜在的风险,而不同对映体对水生生物的毒性存在一定差异。因此,有必要将手性药物的2种对映体当作2种独立的药品,进行更为精确的风险评估。

English Abstract

参考文献 (94)

返回顶部

目录

/

返回文章
返回