新型污染物液晶单体的环境行为和人体暴露研究进展

杨倩玲, 周婷婷, 翁冀远, 刘杨, 刘寅, 徐明, 赵斌, 高丽荣, 郑明辉. 新型污染物液晶单体的环境行为和人体暴露研究进展[J]. 生态毒理学报, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
引用本文: 杨倩玲, 周婷婷, 翁冀远, 刘杨, 刘寅, 徐明, 赵斌, 高丽荣, 郑明辉. 新型污染物液晶单体的环境行为和人体暴露研究进展[J]. 生态毒理学报, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
Yang Qianling, Zhou Tingting, Weng Jiyuan, Liu Yang, Liu Yin, Xu Ming, Zhao Bin, Gao Lirong, Zheng Minghui. A Review on Environmental Occurrence and Human Exposure of Emerging Liquid Crystal Monomers (LCMs)[J]. Asian journal of ecotoxicology, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
Citation: Yang Qianling, Zhou Tingting, Weng Jiyuan, Liu Yang, Liu Yin, Xu Ming, Zhao Bin, Gao Lirong, Zheng Minghui. A Review on Environmental Occurrence and Human Exposure of Emerging Liquid Crystal Monomers (LCMs)[J]. Asian journal of ecotoxicology, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003

新型污染物液晶单体的环境行为和人体暴露研究进展

    作者简介: 杨倩玲(1999—),女,硕士研究生,研究方向为新污染物分析,E-mail:yangqianling21@mails.ucas.ac.cn
    通讯作者: 高丽荣, E-mail: gaolr@rcees.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(22276200);中日友好环境保护中心重点实验室开放基金资助项目(ZXZRLJJ-202101)

  • 中图分类号: X171.5

A Review on Environmental Occurrence and Human Exposure of Emerging Liquid Crystal Monomers (LCMs)

    Corresponding author: Gao Lirong, gaolr@rcees.ac.cn
  • Fund Project:
  • 摘要: 液晶单体(liquid crystal monomers, LCMs)是一类以二苯基或双环己烷作为骨干结构的有机化合物,广泛被应用于各类电子产品的液晶显示器中,其生产及使用量保持逐年增长,据推测,液晶显示器中使用的LCMs需求量已增加到约上千吨。研究表明LCMs具有持久性、生物蓄积性和生物毒性,是一种新型持久性有机污染物。由于液晶显示器中的LCMs没有与基材共价键合,因而在电子设备的生产、使用、处置和回收过程中,会不可避免地释放到环境中。本文主要以2018年以来发表的LCMs相关文献为基础,对其理化性质、生产和排放、在环境介质中的污染特征和环境行为以及人体健康风险评估进行了综述。现有研究结果表明,在沉积物、垃圾渗滤液、室内外灰尘、空气和生物样品如人体血液等介质中都检测到了LCMs的存在,其中大气和灰尘中赋存浓度最高。基于以上分析,本文提出LCMs的未来研究应该优先关注新型LCMs的识别和分析方法、在环境中的迁移转化行为及其在生物体内的蓄积代谢规律等。
  • 加载中
  • Liang X X, Xie R M, Zhu C Y, et al. Comprehensive identification of liquid crystal monomers-biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues-in waste LCD panels and the first estimate of their global release into the environment [J]. Environmental Science & Technology, 2021, 55(18): 12424-12436
    Brown G H. Liquid crystals—The chameleon chemicals [J]. Journal of Chemical Education, 1983, 60(10): 900
    Geelhaar T, Griesar K, Reckmann B. 125 years of liquid crystals—A scientific revolution in the home [J]. Angewandte Chemie, 2013, 52(34): 8798-8809
    Chen H W, Lee J H, Lin B Y, et al. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives [J]. Light, Science & Applications, 2018, 7: 17168
    王丹, 彭海炎, 周兴平, 等. 全息高分子/液晶复合材料的研究进展[J]. 应用化学, 2021, 38(10): 1268-1298

    Wang D, Peng H Y, Zhou X P, et al. Research progress of holographic polymer/liquid crystal composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1268-1298 (in Chinese)

    Ma E, Xu Z M. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels [J]. Journal of Hazardous Materials, 2013, 263(Pt 2): 610-617
    Li J H, Su G Y, Letcher R J, et al. Liquid crystal monomers (LCMs): A new generation of persistent bioaccumulative and toxic (PBT) compounds? [J]. Environmental Science & Technology, 2018, 52(9): 5005-5006
    Su H J, Shi S B, Zhu M, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26450-26458
    Su H J, Ren K F, Li R R, et al. Suspect screening of liquid crystal monomers (LCMs) in sediment using an established database covering 1173 LCMs [J]. Environmental Science & Technology, 2022, 56(12): 8061-8070
    Yao B, Luo Z R, Zhi D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review [J]. Journal of Hazardous Materials, 2021, 403: 123674
    Su H J, Shi S B, Zhu M, et al. Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas [J]. Environmental Science & Technology, 2021, 55(4): 2336-2345
    Zhang X M, Sun X F, Jiang R F, et al. Screening new persistent and bioaccumulative organics in China’s inventory of industrial chemicals [J]. Environmental Science & Technology, 2020, 54(12): 7398-7408
    Zhu M, Su H J, Bao Y R, et al. Experimental determination of octanol-water partition coefficient (Kow) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method [J]. Chemosphere, 2022, 287(Pt 4): 132407
    Feng J J, Sun X F, Zeng E Y. Measurement of octanol-air partition coefficients for liquid crystals based on gas chromatography-retention time and its implication in predicting long-range transport potential [J]. Chemosphere, 2021, 282: 131109
    Wang J S, Nan J N, Li M, et al. First evidence of contamination in aquatic organisms with organic light-emitting materials [J]. Environmental Science & Technology Letters, 2022, 9(9): 739-746
    朱明. 新型污染物—液晶单体(LCMs)的生物富集特征研究[D]. 南京: 南京理工大学, 2021: 46-68 Zhu M. Study on bioaccumulation characteristics of liquid crystal monomer (LCMs), a new pollutant [D]. Nanjing: Nanjing University of Science and Technology, 2021: 46

    -68 (in Chinese)

    Howard P H, Muir D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Ⅲ: Byproducts, impurities, and transformation products [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266
    Hird M. Fluorinated liquid crystals—Properties and applications [J]. Chemical Society Reviews, 2007, 36(12): 2070-2095
    王建新. 新型含氟液晶合成及液晶性研究[D]. 上海: 华东理工大学, 2014: 4-6 Wang J X. The synthesis and mesomorphic properties of new flourinated liquid crystals [D]. Shanghai: East China University of Science and Technology, 2014: 4

    -6 (in Chinese)

    An R, Li Y D, Niu X J, et al. Responses of antioxidant enzymes in catfish exposed to liquid crystals from E-waste [J]. International Journal of Environmental Research and Public Health, 2008, 5(2): 99-103
    Woolverton C J, Gustely E, Li L F, et al. Liquid crystal effects on bacterial viability [J]. Liquid Crystals, 2005, 32(4): 417-423
    Feng J J, Sun X F, Zeng E Y. Emissions of liquid crystal monomers from obsolete smartphone screens in indoor settings: Characteristics and human exposure risk [J]. Environmental Science & Technology, 2022, 56(12): 8053-8060
    Li C, Huang Y, Zhang X, et al. Atmospheric fate and risk investigation of typical liquid crystal monomers [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3600-3607
    Liu Q F, Liggio J, Wentzell J, et al. Atmospheric OH oxidation chemistry of particulate liquid crystal monomers: An emerging persistent organic pollutant in air [J]. Environmental Science & Technology Letters, 2020, 7(9): 646-652
    Huang Y, Zhang X, Li C, et al. Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods [J]. Journal of Hazardous Materials, 2022, 424(Pt B): 127519
    Kawamoto H. The history of liquid-crystal displays [J]. Proceedings of the IEEE, 2002, 90(4): 460-500
    Wang Y Y, Cao Y, He W Z, et al. The improved treatment of liquid crystals into non-hazardous molecules using a microwave-assisted hydrothermal method [J]. Journal of Hazardous Materials, 2020, 393: 122351
    Lahtela V, Virolainen S, Uwaoma A, et al. Novel mechanical pre-treatment methods for effective indium recovery from end-of-life liquid-crystal display panels [J]. Journal of Cleaner Production, 2019, 230: 580-591
    Liu Z F, Xu Z Y, Huang H H, et al. A study of waste liquid crystal display generation in mainland China [J]. Waste Management & Research, 2016, 34(1): 58-66
    Chen Y, Li J H, Chen L Q, et al. Brominated flame retardants (BFRs) in waste electrical and electronic equipment (WEEE) plastics and printed circuit boards (PCBs) [J]. Procedia Environmental Sciences, 2012, 16: 552-559
    Yu D F, Duan H B, Song Q B, et al. Characterization of brominated flame retardants from E-waste components in China [J]. Waste Management, 2017, 68: 498-507
    Lim S R, Schoenung J M. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays [J]. Journal of Hazardous Materials, 2010, 177(1-3): 251-259
    Zhuang X N, Wang Y, Wang R X, et al. Thermal treatment of liquid crystal display panel scraps: The metals migration and potential environmental risk in solid residue [J]. Waste Management, 2019, 94: 49-57
    Wang R X, Xu Z M. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels [J]. Journal of Hazardous Materials, 2016, 302: 45-56
    Rocchetti L, Amato A, Beolchini F. Recovery of indium from liquid crystal displays [J]. Journal of Cleaner Production, 2016, 116: 299-305
    Zhang L G, Wu B T, Chen Y, et al. Treatment of liquid crystals and recycling indium for stripping product gained by mechanical stripping process from waste liquid crystal display panels [J]. Journal of Cleaner Production, 2017, 162: 1472-1481
    Li J H, Gao S, Duan H B, et al. Recovery of valuable materials from waste liquid crystal display panel [J]. Waste Management, 2009, 29(7): 2033-2039
    Chen Y, Zhang L G, Xu Z M. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels [J]. Journal of Hazardous Materials, 2017, 327: 55-63
    Covaci A, Harrad S, Abdallah M A, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour [J]. Environment International, 2011, 37(2): 532-556
    Numata M, Yarita T, Aoyagi Y, et al. Investigation of saponification for determination of polychlorinated biphenyls in marine sediments [J]. Chemosphere, 2005, 58(7): 865-875
    Sun Y X, Yang L L, Chen C Z, et al. Method development for determination of polyhalogenated carbazoles in industrial waste through gas chromatography/triple quadrupole tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2022, 36(14): e9324
    Shen M J, Feng Z Q, Liang X X, et al. Release and gas-particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities [J]. Environmental Science & Technology, 2022, 56(5): 3106-3116
    Li Y H, Zhang T, Cheng Z P, et al. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment [J]. Environment International, 2022, 169: 107535
    Cheng Z P, Shi Q Y, Wang Y, et al. Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks [J]. Environmental Science & Technology, 2022, 56(4): 2248-2257
    Zhang S H, Yang M, Li Y H, et al. Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study [J]. Environment International, 2022, 164: 107295
    Zhu M S, Shen M J, Liang X X, et al. Identification of environmental liquid-crystal monomers: A class of new persistent organic pollutants-fluorinated biphenyls and analogues-emitted from E-waste dismantling [J]. Environmental Science & Technology, 2021, 55(9): 5984-5992
    Tao D Y, Jin Q Q, Ruan Y F, et al. Widespread occurrence of emerging E-waste contaminants—Liquid crystal monomers in sediments of the Pearl River Estuary, China [J]. Journal of Hazardous Materials, 2022, 437: 129377
    Li R R, Ren K F, Su H J, et al. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones [J]. The Science of the Total Environment, 2022, 854: 158408
    Jin Q Q, Tao D Y, Lu Y C, et al. New insight on occurrence of liquid crystal monomers: A class of emerging E-waste pollutants in municipal landfill leachate [J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127146
    Dubocq F, Kärrman A, Gustavsson J, et al. Comprehensive chemical characterization of indoor dust by target, suspect screening and nontarget analysis using LC-HRMS and GC-HRMS [J]. Environmental Pollution, 2021, 276: 116701
    Liu Q F, Abbatt J P D. Liquid crystal display screens as a source for indoor volatile organic compounds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2105067118
    He S X, Shen M J, Wu E Y, et al. Molecular structure on the detoxification of fluorinated liquid crystal monomers with reactive oxidation species in the photocatalytic process [J]. Environmental Science and Ecotechnology, 2022, 9: 100141
  • 加载中
计量
  • 文章访问数:  5236
  • HTML全文浏览数:  5236
  • PDF下载数:  243
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-17
杨倩玲, 周婷婷, 翁冀远, 刘杨, 刘寅, 徐明, 赵斌, 高丽荣, 郑明辉. 新型污染物液晶单体的环境行为和人体暴露研究进展[J]. 生态毒理学报, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
引用本文: 杨倩玲, 周婷婷, 翁冀远, 刘杨, 刘寅, 徐明, 赵斌, 高丽荣, 郑明辉. 新型污染物液晶单体的环境行为和人体暴露研究进展[J]. 生态毒理学报, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
Yang Qianling, Zhou Tingting, Weng Jiyuan, Liu Yang, Liu Yin, Xu Ming, Zhao Bin, Gao Lirong, Zheng Minghui. A Review on Environmental Occurrence and Human Exposure of Emerging Liquid Crystal Monomers (LCMs)[J]. Asian journal of ecotoxicology, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003
Citation: Yang Qianling, Zhou Tingting, Weng Jiyuan, Liu Yang, Liu Yin, Xu Ming, Zhao Bin, Gao Lirong, Zheng Minghui. A Review on Environmental Occurrence and Human Exposure of Emerging Liquid Crystal Monomers (LCMs)[J]. Asian journal of ecotoxicology, 2023, 18(1): 160-173. doi: 10.7524/AJE.1673-5897.20221117003

新型污染物液晶单体的环境行为和人体暴露研究进展

    通讯作者: 高丽荣, E-mail: gaolr@rcees.ac.cn
    作者简介: 杨倩玲(1999—),女,硕士研究生,研究方向为新污染物分析,E-mail:yangqianling21@mails.ucas.ac.cn
  • 1. 国科大杭州高等研究院环境学院, 杭州 310000;
  • 2. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085
基金项目:

国家自然科学基金资助项目(22276200);中日友好环境保护中心重点实验室开放基金资助项目(ZXZRLJJ-202101)

摘要: 液晶单体(liquid crystal monomers, LCMs)是一类以二苯基或双环己烷作为骨干结构的有机化合物,广泛被应用于各类电子产品的液晶显示器中,其生产及使用量保持逐年增长,据推测,液晶显示器中使用的LCMs需求量已增加到约上千吨。研究表明LCMs具有持久性、生物蓄积性和生物毒性,是一种新型持久性有机污染物。由于液晶显示器中的LCMs没有与基材共价键合,因而在电子设备的生产、使用、处置和回收过程中,会不可避免地释放到环境中。本文主要以2018年以来发表的LCMs相关文献为基础,对其理化性质、生产和排放、在环境介质中的污染特征和环境行为以及人体健康风险评估进行了综述。现有研究结果表明,在沉积物、垃圾渗滤液、室内外灰尘、空气和生物样品如人体血液等介质中都检测到了LCMs的存在,其中大气和灰尘中赋存浓度最高。基于以上分析,本文提出LCMs的未来研究应该优先关注新型LCMs的识别和分析方法、在环境中的迁移转化行为及其在生物体内的蓄积代谢规律等。

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回