鱼类急性毒性体外替代标准试验方法的应用与适用性评价
Application of Standard in vitro Alternative Testing Method for Acute Fish Toxicity and Evaluation on Its Applicability
-
摘要: 经济合作与发展组织(Organization for Economic Co-operation and Development, OECD)2021年颁布虹鳟鱼鳃上皮细胞系RTgill-W1急性毒性试验标准方法(OECD 249,2021)作为鱼类急性毒性试验或其预试验的体外替代方法,因试验体系小、通量高、周期短而具良好的应用潜能。但方法被认为对神经毒物可能存在预测偏差,尚无对金属化合物的应用报道。此外,细胞毒性数据与鱼体内数据的相关性未知。目前尚无采用该标准方法的实际应用报道,故方法实际适用性不明确。因此,采用涵盖水生毒性试验常用参比物、金属化合物、神经毒物在内的10种化学品进行该方法应用评价研究。结果表明,参照标准方法,同一实验室结果具可重复性及再现性。除通过细胞凋亡途径导致毒性效应的多菌灵外,其余化学品细胞急性毒性EC50值与标准鱼种(OECD 203推荐鱼种及稀有鮈鲫)急性毒性LC50值呈良好线性关系(相关系数(r2)为0.7009~0.7975)。细胞急性毒性EC50与鱼类急性毒性LC50存在数值差异(差异在10倍以内),但同一实验室采用标准方法建立化学品细胞毒性与标准鱼种的体内急性毒性良好转换关系后,可通过细胞急性毒性准确预测鱼体内急性毒性。此外,OECD 249方法可拓展用于评估高分子量、难溶化学品是否可透过生物膜并产生毒性,决定其登记申报时是否可豁免水生毒性试验。Abstract: As an alternative method of acute fish toxicity test or its range-finding test, a standard in vitro testing method by using gill epithelial cell lines of rainbow trout (OECD 249, 2021) has been published by Organization for Economic Co-operation and Development (OECD) in 2021. Due to the advantages of small test system, high throughput and short test period, this standard method showed good potential for application. However, it also has its limitations, e.g. maybe having predictive bias for neurotoxicants, and having no application for metal compounds. In addition, the correlation of cytotoxicity and acute fish toxicity, as well as its applicability in practical application is still unclear. Therefore, ten test chemicals including reference substance commonly used in aquatic toxicity test, metal compounds and neurotoxic substances have been used in this study to evaluate the applicability of OECD 249. The results indicated that RTgill-W1 cytotoxicity tests are repeatable and reproducible by using standard testing method (i.e. OECD 249) in the same laboratory. With the exception of carbendazim, which leads toxic effects in fish through the apoptotic pathway, there is a good linear relationship between the EC50 values of acute cytotoxicity of other chemicals and the LC50 values of acute toxicity by using standard fish species (i.e. test species recommended by OECD 203 and Gobiocypris rarus) (with the correlation coefficient (r2) of 0.7009 to 0.7975). Although there were certain differences between EC50 values of cytotoxicity and LC50 values of acute fish toxicity (the difference was less than 10 folds), a good conversation relationship between cytotoxicity and in vivo acute toxicity by using standard fish species could still be established in the same laboratory, which means accurate prediction of fish LC50 maybe achieved by using EC50 of cytotoxicity. Furthermore, OECD 249 testing method can be also used to assess the possibility of toxicity produced by high molecular chemicals with limited water solubility and passing through biomembranes, and then determine whether in vivo aquatic toxicity tests can be waived for chemical registration.
-
Key words:
- fish /
- acute toxicity /
- in vitro alternative test /
- RTgill-W1
-
-
Organization for Economic Cooperation and Development (OECD). OECD guidelines for the testing of chemicals. Section 2:Effects on biotic systems test No. 236:Fish embryo acute toxicity (FET) test[S]. Paris:OECD, 2013 Organization for Economic Cooperation and Development (OECD). OECD guidelines for the testing of chemicals. Section 2:Effects on biotic systems test No. 203:Fish, acute toxicity test[S]. Paris:OECD, 2019 Organization for Economic Cooperation and Development (OECD). OECD guidelines for the testing of chemicals. Section 2:Effects on biotic systems test No. 249:Fish cell line acute toxicity:The RTgill-W1 cell line assay[S]. Paris:OECD, 2021 International Standardization Organization (ISO). ISO 21115, Water quality-Determination of the acute toxicity of water samples and chemicals to fish gill cell line (RTgill-W1)[S]. Geneva:ISO, 2019 Organization for Economic Cooperation and Development (OECD). Series on testing and assessment, No. 334:Validation report for the test guideline 249 on fish cell line acute toxicity-the RTgill W1 cell line assay[S]. Paris:OECD, 2021 Lovinger D M, White G, Weight F F. Ethanol inhibition of neuronal glutamate receptor function[J]. Annals of Medicine, 1990, 22(4):247-252 Zheng Y M, Zhu X J, Zhou P Z, et al. Hexachlorophene is a potent KCNQ1/KCNE1 potassium channel activator which rescues LQTs mutants[J]. PLoS One, 2012, 7(12):e51820 Pal R, Monroe T O, Palmieri M, et al. Rotenone induces neurotoxicity through Rac1-dependent activation of NADPH oxidase in SHSY-5Y cells[J]. FEBS Letters, 2014, 588(3):472-481 Wnuk A, Rzemieniec J, Lasoń W, et al. Benzophenone-3 impairs autophagy, alters epigenetic status, and disrupts retinoid X receptor signaling in apoptotic neuronal cells[J]. Molecular Neurobiology, 2018, 55(6):5059-5074 Zhang W J, Fan R Q, Luo S L, et al. Antagonistic effects and mechanisms of carbendazim and chlorpyrifos on the neurobehavior of larval zebrafish[J]. Chemosphere, 2022, 293:133522 Kim D, Kim E H, Bae O N. Comparative study of two isothiazolinone biocides, 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT), on barrier function and mitochondrial bioenergetics using murine brain endothelial cell line (bEND.3)[J]. Journal of Toxicology and Environmental Health Part A, 2021, 84(22):932-943 Wang D T, Wang X D, Huang H S, et al. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity[J]. Journal of Hazardous Materials, 2021, 413:125414 Szychowski K A, Wnuk A, Rzemieniec J, et al. Triclosan-evoked neurotoxicity involves NMDAR subunits with the specific role of GluN2A in caspase-3-dependent apoptosis[J]. Molecular Neurobiology, 2019, 56(1):1-12 Kajta M, Rzemieniec J, Wnuk A, et al. Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes[J]. The Science of the Total Environment, 2020, 701:134818 中华人民共和国环境保护部. 新化学物质危害评估准则:HJ/T 154-2004[S]. 北京:中国环境科学出版社, 2004 Fischer M, Belanger S E, Berckmans P, et al. Repeatability and reproducibility of the RTgill-W1 cell line assay for predicting fish acute toxicity[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 169(2):353-364 Dayeh V R, Schirmer K, Lee L E J, et al. Rainbow Trout Gill Cell Line Microplate Cytotoxicity Test[M]//Blaise C, Férard J F. Small-scale Freshwater Toxicity Investigations. Berlin/Heidelberg:Springer-Verlag, 2005:473-503 王利, 汪开毓. 铜对鲤损害的电镜X射线显微分析[J]. 水生态学杂志, 2009, 30(5):67-70 Wang L, Wang K Y. Studies on electron probe X-ray microanalysis of copper in poisoned Cyprinus carpio[J]. Journal of Hydroecology, 2009, 30(5):67-70(in Chinese)
Selmanoglu G, Barlas N, Songür S, et al. Carbendazim-induced haematological, biochemical and histopathological changes to the liver and kidney of male rats[J]. Human Experimental Toxicology, 2001, 20(12):625-630 Schneider P. Drug-induced lysosomal disorders in laboratory animals:New substances acting on lysosomes[J]. Archives of Toxicology, 1992, 66(1):23-33 郭晓燕, 杨陈, 刘华锋. 溶酶体与肾脏疾病[J]. 中华肾脏病杂志, 2019, 35(8):635-640 Guo X Y, Yang C, Liu H F. Lysosomes and kidney diseases[J]. Chinese Journal of Nephrology, 2019, 35(8):635-640(in Chinese)
Tanneberger K, Knöbel M, Busser F J, et al. Predicting fish acute toxicity using a fish gill cell line-based toxicity assay[J]. Environmental Science & Technology, 2013, 47(2):1110-1119 Natsch A, Laue H, Haupt T, et al. Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay[J]. Environmental Toxicology and Chemistry, 2018, 37(3):931-941 Belanger S E, Rawlings J M, Carr G J. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals[J]. Environmental Toxicology and Chemistry, 2013, 32(8):1768-1783 European Chemicals Agency (ECHA). Guidance on information requirements and chemical safety assessment:Chapter R.10:Characterisation of dose[concentration]- response for environment[S]. Helsinki, Finland:ECHA, 2008 Deka S, Mahanta R. Malathion toxicity on fish-A review[J]. International Journal of Current Research, 2016, 8(12):44120-44128 王绿平, 张京佶, 赵华清. 稀有鮈鲫作为鱼类胚胎急性毒性试验受试鱼种的敏感性研究[J]. 生态毒理学报, 2021, 16(5):102-112 Wang L P, Zhang J J, Zhao H Q. Sensitivity of Chinese rare minnows (Gobiocypris rarus) for fish embryo acute toxicity test[J]. Asian Journal of Ecotoxicology, 2021, 16(5):102-112(in Chinese)
Palawski D U, Knowles C O. Toxicological studies of benomyl and carbendazim in rainbow trout, channel catfish and bluegills[J]. Environmental Toxicology and Chemistry, 1986, 5(12):1039-1046 University of Hertfordshire. Pesticide Properties DataBase (PPDB):Carbendazim (Ref:BAS 346F)[EB/OL]. (2021-06-01)[2021-02-02]. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/116.htm Jiang J H, Wu S G, Wang Y H, et al. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development[J]. Toxicology in Vitro, 2015, 29(7):1473-1481 Scholz S, Klüver N, Kühne R. Analysis of the relevance and adequateness of using fish embryo acute toxicity (FET) test guidance (OECD 236) to fulfil the information requirements and addressing concerns under REACH[R]. Helsinki, Finland:European Chemicals Agency, 2016 di Nunzio M, Valli V, Tomás-Cobos L, et al. Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives?[J]. BMC Complementary and Alternative Medicine, 2017, 17(1):453 Wang Y C, Chaung R H, Tung L C. Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines[J]. Aquatic Toxicology, 2004, 69(1):67-79 Bermejo-Nogales A, Fernández-Cruz M L, Navas J M. Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials[J]. Regulatory Toxicology and Pharmacology, 2017, 90:297-307 -

计量
- 文章访问数: 1870
- HTML全文浏览数: 1870
- PDF下载数: 145
- 施引文献: 0