典型PFOA和PFOS替代品对水生生物的毒性效应研究进展
Research Progress on Toxic Effects of Typical PFOA and PFOS Substitutes on Aquatic Organisms
-
摘要: 由于全氟辛烷羧酸(perfluorooctanoic acid,PFOA)和全氟辛烷磺酸(perfluorooctane sulfonic acid,PFOS)具有环境持久性和生物毒性已被限制或禁止生产使用,其替代品开始大量的生产和应用。PFOA和PFOS替代品已在全球多种环境介质中检出,尤其是在水环境中。PFOA和PFOS替代品在水环境中的残留不仅会造成水体污染,还可能对水生生物产生毒性作用,危害水生生态安全,因此受到人们的广泛关注。本文对典型PFOA和PFOS替代品在水环境中的分布状况和水生生物中的积累情况进行了归纳总结,并重点讨论了其对水生生物的毒性效应,以期为PFOA和PFOS替代品的生态风险评估提供参考。
-
关键词:
- PFOA和PFOS替代品 /
- 水生生物 /
- 毒性效应
Abstract: Due to the environmental persistence and toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), their production and use have been restricted or banned, and their substitutes have begun to be produced and applied extensively. PFOA and PFOS substitutes have been detected in various environmental matrices worldwide, particularly in aquatic environments. Their residues in aquatic environments not only cause water pollution, but also may have toxic effects on aquatic organisms and threaten aquatic ecological safety. This situation has received extensive attention worldwide. In our paper, the distribution of typical PFOA and PFOS substitutes in aquatic environments and the bioaccumulation of substitutes in aquatic organisms was summarized, and the toxic effects of substitutes on aquatic organisms were mainly discussed. This review will provide a reference for ecological risk assessment of PFOA and PFOS substitutes.-
Key words:
- PFOA and PFOS substitutes /
- aquatic organisms /
- toxic effects
-
-
Jantzen C E, Annunziato K M, Cooper K R. Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA[J]. Aquatic Toxicology, 2016, 180:123-130 Hoover G M, Chislock M F, Tornabene B J, et al. Uptake and depuration of four per/polyfluoroalkyl substances (PFASS) in northern leopard frog Rana pipiens tadpoles[J]. Environmental Science & Technology Letters, 2017, 4(10):399-403 Zhang S H, Chen K, Li W M, et al. Varied thyroid disrupting effects of perfluorooctanoic acid (PFOA) and its novel alternatives hexafluoropropylene-oxide-dimer-acid (GenX) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA) in vitro[J]. Environment International, 2021, 156:106745 Duan Y S, Sun H W, Yao Y M, et al. Serum concentrations of per-/polyfluoroalkyl substances and risk of type 2 diabetes:A case-control study[J]. The Science of the Total Environment, 2021, 787:147476 Dong G Z, Zhang R, Huang H Y, et al. Exploration of the developmental toxicity of TCS and PFOS to zebrafish embryos by whole-genome gene expression analyses[J]. Environmental Science and Pollution Research International, 2021, 28(40):56032-56042 Ojo A F, Xia Q, Peng C, et al. Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress[J]. Chemosphere, 2021, 281:130808 Jo A, Ji K, Choi K. Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms[J]. Chemosphere, 2014, 108:360-366 Khan E A, Zhang X K, Hanna E M, et al. Application of quantitative transcriptomics in evaluating the ex vivo effects of per- and polyfluoroalkyl substances on Atlantic cod (Gadus morhua) ovarian physiology[J]. The Science of the Total Environment, 2021, 755(Pt 1):142904 Schröter-Kermani C, Müller J, Jürling H, et al. Retrospective monitoring of perfluorocarboxylates and perfluorosulfonates in human plasma archived by the German Environmental Specimen Bank[J]. International Journal of Hygiene and Environmental Health, 2013, 216(6):633-640 Coperchini F, Croce L, Denegri M, et al. Adverse effects of in vitro GenX exposure on rat thyroid cell viability, DNA integrity and thyroid-related genes expression[J]. Environmental Pollution, 2020, 264:114778 Chappell G A, Thompson C M, Wolf J C, et al. Assessment of the mode of action underlying the effects of GenX in mouse liver and implications for assessing human health risks[J]. Toxicologic Pathology, 2020, 48(3):494-508 周秀鹃, 盛南, 王建设, 等. 全氟和多氟化合物替代品的研究进展[J]. 生态毒理学报, 2017, 12(3):3-12 Zhou X J, Sheng N, Wang J S, et al. The Current research status of several kinds of fluorinated alternatives[J]. Asian Journal of Ecotoxicology, 2017, 12(3):3-12(in Chinese)
Xu C, Song X, Liu Z Y, et al. Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China[J]. The Science of the Total Environment, 2021, 776:145731 Pasecnaja E, Bartkevics V, Zacs D. Occurrence of selected per- and polyfluorinated alkyl substances (PFASs) in food available on the European market-A review on levels and human exposure assessment[J]. Chemosphere, 2022, 287(Pt 4):132378 Thompson C M, Fitch S E, Ring C, et al. Development of an oral reference dose for the perfluorinated compoundGenX[J]. Journal of Applied Toxicology, 2019, 39(9):1267-1282 Sheng N, Zhou X J, Zheng F, et al. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice[J]. Archives of Toxicology, 2017, 91(8):2909-2919 Zhou X J, Wang J S, Sheng N, et al.Subchronic reproductive effects of 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFAES), an alternative to PFOS, on adult male mice[J]. Journal of Hazardous Materials, 2018, 358:256-264 Cai Y P, Wang Q Y, Zhou B H, et al. A review of responses of terrestrial organisms to perfluorinated compounds[J]. The Science of the Total Environment, 2021, 793:148565 Brase R A, Mullin E J, Spink D C. Legacy and emerging per- and polyfluoroalkyl substances:Analytical techniques, environmental fate, and health effects[J]. International Journal of Molecular Sciences, 2021, 22(3):995 Gebreab K Y, Eeza M N H, Bai T Y, et al. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances[J]. Environmental Pollution, 2020, 265:114928 陈家苗, 王建设. 新型全氟和多氟烷醚类化合物的环境分布与毒性研究进展[J]. 生态毒理学报, 2020, 15(5):28-34 Chen J M, Wang J S. Research progress in environmental distribution and toxicity of per-and polyfluoroalkyl ether substances[J]. Asian Journal of Ecotoxicology, 2020, 15(5):28-34(in Chinese)
Lalonde B, Garron C. Perfluoroalkyl substances (PFASs) in the Canadian freshwater environment[J]. Archives of Environmental Contamination and Toxicology, 2022, 82(4):581-591 Cao X H, Wang C C, Lu Y L, et al. Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area[J]. Ecotoxicology and Environmental Safety, 2019, 174:208-217 Sun Q P, Bi R, Wang T Y, et al. Are there risks induced by novel and legacy poly- and perfluoroalkyl substances in coastal aquaculture base in South China?[J]. The Science of the Total Environment, 2021, 779:146539 Wang Q, Song X, Wei C L, et al. Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China[J]. Chemosphere, 2022, 291(Pt 2):132946 Chen S Q, Yan M, Chen Y, et al. Perfluoroalkyl substances in the surface water and fishes in Chaohu Lake, China[J]. Environmental Science and Pollution Research International, 2022, 29(50):75907-75920 Ren J, Yu M J, Chen F, et al. Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau[J]. The Science of the Total Environment, 2023, 856(Pt 1):159026 Meng Y, Yao Y M, Chen H, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Dagang Oilfield:Multimedia distribution and contributions of unknown precursors[J]. Journal of Hazardous Materials, 2021, 412:125177 Zhang F S, Wang Y L, Wei Z, et al. Perfluorinated compounds in a river basin from QingHai-Tibet Plateau:Occurrence, sources and key factors[J]. Ecotoxicology and Environmental Safety, 2021, 228:113043 Tang J X, Zhu Y L, Xiang B, et al. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park:Concentrations, correlations and health risk assessments[J]. Scientific Reports, 2022, 12:3370 Ali A M, Higgins C P, Alarif W M, et al. Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea:A baseline study[J]. Environmental Science and Pollution Research International, 2021, 28(3):2791-2803 Khan K, Younas M, Zhou Y Q, et al. First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System:Occurrence, source and environmental risk[J]. Environmental Research, 2022, 211:113113 Gao Y, Liang Y, Gao K, et al. Levels, spatial distribution and isomer profiles of perfluoroalkyl acids in soil, groundwater and tap water around a manufactory in China[J]. Chemosphere, 2019, 227:305-314 Bai X L, Son Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA[J]. The Science of the Total Environment, 2021, 751:141622 Selvaraj K K, Murugasamy M, Nikhil N P, et al. Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian Rivers and their risk assessment[J]. Chemosphere, 2021, 277:130228 Schmidt N, Fauvelle V, Castro-Jiménez J, et al. Occurrence of perfluoroalkyl substances in the Bay of Marseille (NW Mediterranean Sea) and the Rhône River[J]. Marine Pollution Bulletin, 2019, 149:110491 Gebbink W A, van Asseldonk L, van Leeuwen S P J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands[J]. Environmental Science & Technology, 2017, 51(19):11057-11065 Xu B T, Liu S, Zhou J L, et al. PFAS and their substitutes in groundwater:Occurrence, transformation and remediation[J]. Journal of Hazardous Materials, 2021, 412:125159 Liu Z Y, Xu C, Johnson A C, et al. Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China[J]. Science of the Total Environment, 2022, 827:154413 Brandsma S H, Koekkoek J C, van Velzen M J M, et al. The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands[J]. Chemosphere, 2019, 220:493-500 Gebbink W A, van Leeuwen S P J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant:Review of historic and current PFOA and GenX contamination in the Netherlands[J]. Environment International, 2020, 137:105583 Pétré M A, Genereux D P, Koropeckyj-Cox L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9):5848-5856 Pan Y T, Zhang H X, Cui Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14):7621-7629 Zhou J, Li S J, Liang X X, et al. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China[J]. Journal of Hazardous Materials, 2021, 404(Pt A):124134 Zhou J, Li Z, Guo X T, et al. Evidences for replacing legacy per- and polyfluoroalkyl substances with emerging ones in Fen and Wei River Basins in Central and Western China[J]. Journal of Hazardous Materials, 2019, 377:78-87 Feng X M, Ye M Q, Li Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea[J]. Journal of Hazardous Materials, 2020, 389:122124 Zhao Z, Cheng X H, Hua X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263:114391 Du D, Lu Y L, Zhou Y Q, et al. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China:Spatial distribution, mass loadings, and worldwide comparisons[J]. Environment International, 2022, 169:107506 Li X T, Wang Y, Qian C J, et al. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China:Occurrence, distribution, sources and ecological risks[J]. Journal of Environmental Sciences (China), 2023, 125:185-193 Tang A P, Zhang X H, Li R F, et al. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China[J]. Chemosphere, 2022, 295:133855 Chen H T, Reinhard M, Nguyen T V, et al. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment[J]. Environmental Pollution, 2017, 227:397-405 Gao L J, Liu J L, Bao K, et al. Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China[J]. The Science of the Total Environment, 2020, 729:138753 Wu J, Junaid M, Wang Z F, et al. Spatiotemporal distribution, sources and ecological risks of perfluorinated compounds (PFCs) in the Guanlan River from the rapidly urbanizing areas of Shenzhen, China[J]. Chemosphere, 2020, 245:125637 Tang J X, Zhu Y L, Li Y, et al. Occurrence characteristics and health risk assessment of per- and polyfluoroalkyl substances from water in residential areas around fluorine chemical industrial areas, China[J]. Environmental Science and Pollution Research International, 2022, 29(40):60733-60743 Guo R, Liu X L, Liu J, et al. Occurrence, partition and environmental risk assessment of per- and polyfluoroalkyl substances in water and sediment from the Baiyangdian Lake, China[J]. Scientific Reports, 2020, 10(1):4691 Pan X, Ye J, Zhang H, et al. Occurrence, removal and bioaccumulation of perfluoroalkyl substances in Lake Chaohu, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(10):1692 Wang T, Vestergren R,Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers[J]. Environmental Science & Technology, 2016, 50(21):11584-11592 Wei C L, Wang Q, Song X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152:141-150 Wang S Q, Ding G H, Liu Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China:Occurrence and phase partitioning[J]. Science of the Total Environment, 2022, 827:154274 Munoz G, Fechner L C, Geneste E, et al. Spatio-temporal dynamics of per and polyfluoroalkyl substances (PFASs) and transfer to periphytic biofilm in an urban river:Case-study on the River Seine[J]. Environmental Science and Pollution Research, 2018, 25(24):23574-23582 Marchiandi J, Szabo D, Dagnino S, et al. Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles[J]. Environmental Pollution, 2021, 278:116839 Xu L, Shi Y L, Li C X, et al. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in Northern China[J]. Environmental Science & Technology, 2017, 51(24):14173-14181 Hou M M, Jin Q, Na G S, et al. Emissions, isomer-specific environmental behavior, and transformation of OBS from one major fluorochemical manufacturing facility in China[J]. Environmental Science & Technology, 2022, 56(12):8103-8113 Vongphachan V, Cassone C G, Wu D M, et al. Effects of perfluoroalkyl compounds on mRNA expression levels of thyroid hormone-responsive genes in primary cultures of avian neuronal cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2011, 120(2):392-402 Arinaitwe K, Koch A, Taabu-Munyaho A, et al. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa[J]. Chemosphere, 2020, 260:127536 Penland T N, Cope W G, Kwak T J, et al. Trophodynamics of per- and polyfluoroalkyl substances in the food web of a large Atlantic slope river[J]. Environmental Science & Technology, 2020, 54(11):6800-6811 Diao J Y, Chen Z W, Wang T Y, et al. Perfluoroalkyl substances in marine food webs from South China Sea:Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431:128602 Abafe O A, Macheka L R, Abafe O T, et al. Concentrations and human exposure assessment of per and polyfluoroalkyl substances in farmed marine shellfish in South Africa[J]. Chemosphere, 2021, 281:130985 Vogs C, Johanson G, Näslund M, et al. Toxicokinetics of perfluorinated alkyl acids influences their toxic potency in the zebrafish embryo (Danio rerio)[J]. Environmental Science & Technology, 2019, 53(7):3898-3907 Zhang B, He Y, Yang G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea:Temporal trends and tissue-specific accumulation[J]. Environmental Science & Technology, 2022, 56(10):6113-6122 Meng J, Liu S F, Zhou Y Q, et al. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk?[J]. Ecotoxicology and Environmental Safety, 2019, 181:194-201 Chiesa L M, Nobile M, Pasquale E, et al. Detection of perfluoroalkyl acids and sulphonates in Italian eel samples by HPLC-HRMS Orbitrap[J]. Chemosphere, 2018, 193:358-364 Zhang A Q, Wang P, Lu Y L, et al. Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea, China[J]. The Science of the Total Environment, 2019, 665:1026-1034 Wu J Y, Liu W X, He W, et al. Comparisons of tissue distributions and health risks of perfluoroalkyl acids (PFAAs) in two fish species with different trophic levels from Lake Chaohu, China[J]. Ecotoxicology and Environmental Safety, 2019, 185:109666 Wang Q, Ruan Y F, Jin L J, et al. Oysters for legacy and emerging per- and polyfluoroalkyl substances (PFASs) monitoring in estuarine and coastal waters:Phase distribution and bioconcentration profile[J]. The Science of the Total Environment, 2022, 846:157453 Xu L J, Chen H, Han X, et al. First report on per- and polyfluoroalkyl substances (PFASs) in coral communities from the Northern South China Sea:Occurrence, seasonal variation, and interspecies differences[J]. Environmental Pollution, 2022, 314:120214 Shi Y L, Vestergren R, Zhou Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius):Evidence for a highly bioaccumulative contaminant of emerging concern[J]. Environmental Science & Technology, 2015, 49(24):14156-14165 Wu Y M, Deng M, Jin Y X, et al. Uptake and elimination of emerging polyfluoroalkyl substance F-53B in zebrafish larvae:Response of oxidative stress biomarkers[J]. Chemosphere, 2019, 215:182-188 Spaan K M, van Noordenburg C, Plassmann M M, et al. Fluorine mass balance and suspect screening in marine mammals from the Northern Hemisphere[J]. Environmental Science & Technology, 2020, 54(7):4046-4058 He Y X, Lv D, Li C H, et al. Human exposure to F-53B in China and the evaluation of its potential toxicity:An overview[J]. Environment International, 2022, 161:107108 Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391 Munoz G, Desrosiers M, Duy S V, et al. Environmental occurrence of perfluoroalkyl acids and novel fluorotelomer surfactants in the freshwater fish Catostomus commersonii and sediments following firefighting foam deployment at the lac-mégantic railway accident[J]. Environmental Science & Technology, 2017, 51(3):1231-1240 Kaboré H A, Goeury K, Desrosiers M, et al. Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from background and firefighting foam impacted ecosystems in Eastern Canada[J]. The Science of the Total Environment, 2022, 816:151563 Shi Y L, Song X W, Jin Q, et al. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp[J]. Environment International, 2020, 135:105418 Godfrey A, Abdel-moneim A, Sepúlveda M S. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos[J]. Chemosphere, 2017, 181:710-712 Barmentlo S H, Stel J M, van Doorn M, et al. Acute and chronic toxicity of short chained perfluoroalkyl substances to Daphnia magna[J]. Environmental Pollution, 2015, 198:47-53 Kim M, Park M S, Son J, et al. Perfluoroheptanoic acid affects amphibian embryogenesis by inducing the phosphorylation of ERK and JNK[J]. International Journal of Molecular Medicine, 2015, 36(6):1693-1700 Shi G H, Cui Q Q, Pan Y T, et al. 6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis[J]. Aquatic Toxicology, 2017, 190:53-61 Tornabene B J, Chislock M F, Gannon M E, et al. Relative acute toxicity of three per- and polyfluoroalkyl substances on nine species of larval amphibians[J]. Integrated Environmental Assessment and Management, 2021, 17(4):684-690 Wang S W, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18):10163-10170 Horie Y, Nomura M, Okamoto K, et al. Effect of thyroid hormone-disrupting chemicals on swim bladder inflation and thyroid hormone-related gene expression in Japanese medaka and zebrafish[J]. Journal of Applied Toxicology, 2022, 42(8):1385-1395 Godfrey A, Hooser B, Abdelmoneim A, et al. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish[J]. Aquatic Toxicology, 2017, 193:228-235 Annunziato K M, Jantzen C E, Gronske M C, et al. Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to PFHxA, PFHxS and 6:2 FTOH[J]. Aquatic Toxicology, 2019, 208:126-137 Guo X C, Zhang S N, Liu X H, et al. Evaluation of the acute toxicity and neurodevelopmental inhibition of perfluorohexanoic acid (PFHxA) in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2021, 225:112733 Zhang S N, Guo X C, Lu S Y, et al. Perfluorohexanoic acid caused disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Ecotoxicology and Environmental Safety, 2022, 232:113283 Blanc M, Kärrman A, Kukucka P, et al. Mixture-specific gene expression in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonic acid (PFOS), perfluorohexanoic acid (PFHxA) and 3,3',4,4',5-pentachlorobiphenyl (PCB126)[J]. The Science of the Total Environment, 2017, 590-591:249-257 Tang L Z, Liu M Y, Song S W, et al. Interaction between hypoxia and perfluorobutane sulfonate on developmental toxicity and endocrine disruption in marine medaka embryos[J]. Aquatic Toxicology, 2020, 222:105466 Sant K E, Venezia O L, Sinno P P, et al. Perfluorobutanesulfonic acid disrupts pancreatic organogenesis and regulation of lipid metabolism in the zebrafish, Danio rerio[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 167(1):258-268 Sun B L, Liu M Y, Tang L Z, et al. Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae[J]. The Science of the Total Environment, 2021, 799:149458 Sun B L, Liu M Y, Tang L Z, et al. Probiotics inhibit the stunted growth defect of perfluorobutanesulfonate via stress and thyroid axes in zebrafish larvae[J]. Environmental Pollution, 2021, 290:118013 Flynn R W, Hoover G, Iacchetta M, et al. Comparative toxicity of aquatic per- and polyfluoroalkyl substance exposure in three species of amphibians[J]. Environmental Toxicology and Chemistry, 2022, 41(6):1407-1415 Deng M, Wu Y M, Xu C, et al. Multiple approaches to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at environmentally relevant concentrations[J]. The Science of the Total Environment, 2018, 624:215-224 Shi G H, Cui Q Q, Pan Y T, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos[J]. Aquatic Toxicology, 2017, 185:67-75 Liu S, Lai H, Wang Q Y, et al. Immunotoxicity of F53B, an alternative to PFOS, on zebrafish (Danio rerio) at different early life stages[J]. Science of the Total Environment, 2021, 790:148165 Huang J, Sun L W, Mennigen J A, et al. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish:An emphasis on cilia disruption[J]. Journal of Hazardous Materials, 2021, 409:124491 Ishibashi H, Kim E Y, Iwata H. Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α by perfluoroalkyl carboxylates and sulfonates:Estimation of PFOA induction equivalency factors[J]. Environmental Science & Technology, 2011, 45(7):3123-3130 Søderstrøm S, Lille-Langøy R, Yadetie F, et al. Agonistic and potentiating effects of perfluoroalkyl substances (PFAS) on the Atlantic cod (Gadus morhua) peroxisome proliferator-activated receptors (PPARs)[J]. Environment International, 2022, 163:107203 Wu Y M, Deng M, Jin Y X, et al. Toxicokinetics and toxic effects of a Chinese PFOS alternative F-53B in adult zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 171:460-466 Dasgupta S, Choyke S, Ferguson P L, et al. Antioxidant responses and oxidative stress in sheepshead minnow larvae exposed to Corexit 9500® or its component surfactant, DOSS[J]. Aquatic Toxicology, 2018, 194:10-17 Liu X L, Li Y Y, Zheng X W, et al. Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure[J]. The Science of the Total Environment, 2021, 797:149005 Hoseinifar S H, Shakouri M, Yousefi S, et al. Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste[J]. Fish & Shellfish Immunology, 2020, 100:171-178 Hu C Y, Huang Z L, Liu M Y, et al. Shift in skin microbiota and immune functions of zebrafish after combined exposure to perfluorobutanesulfonate and probiotic Lactobacillus rhamnosus[J]. Ecotoxicology and Environmental Safety, 2021, 218:112310 Xu M M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development[J]. The Science of the Total Environment, 2022, 808:151739 Wu Y M, Huang J, Deng M, et al. Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish[J]. Chemosphere, 2019, 235:945-951 Yang H L, Lai H, Huang J, et al. Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish[J]. Chemosphere, 2020, 255:127040 Zhang W L, Liang Y N. Interactions between Lemna minor (common duckweed) and PFAS intermediates:Perfluorooctane sulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA)[J]. Chemosphere, 2021, 276:130165 Huang J, Wang Q Y, Liu S, et al. Crosstalk between histological alterations, oxidative stress and immune aberrations of the emerging PFOS alternative OBS in developing zebrafish[J]. Science of the Total Environment, 2021, 774:145443 Zou Y L, Wu Y M, Wang Q Y, et al. Comparison of toxicokinetics and toxic effects of PFOS and its novel alternative OBS in zebrafish larvae[J]. Chemosphere, 2021, 265:129116 Park S, Moon N R, Kang S N, et al. Ferulic acid and vinpocetine intake improves memory function by enhancing insulin sensitivity and reducing neuroinflammation and oxidative stress in type 2 diabetic animals with induced Alzheimer's disease[J]. Journal of Functional Foods, 2022, 95:105180 Huang J, Wang Q Y, Liu S, et al. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish[J]. Journal of Hazardous Materials, 2022, 425:127950 Bonato M, Corrà F, Bellio M, et al. PFAS environmental pollution and antioxidant responses:An overview of the impact on human field[J]. International Journal of Environmental Research and Public Health, 2020, 17(21):8020 Shi Y L, Wang J M, Pan Y Y, et al. Tissue distribution of perfluorinated compounds in farmed freshwater fish and human exposure by consumption[J]. Environmental Toxicology and Chemistry, 2012, 31(4):717-723 Wasel O, Thompson K M, Freeman J L. Assessment of unique behavioral, morphological, and molecular alterations in the comparative developmental toxicity profiles of PFOA, PFHxA, and PFBA using the zebrafish model system[J]. Environment International, 2022, 170:107642 Rericha Y, Truong L, Leong C, et al. Dietary perfluorohexanoic acid (PFHxA) exposures in juvenile zebrafish produce subtle behavioral effects across generations[J]. Toxics, 2022, 10(7):372 Gaballah S, Swank A, Sobus J R, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS[J]. Environmental Health Perspectives, 2020, 128(4):47005 Chen L G, Tsui M M P, Shi Q P, et al. Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure[J]. Aquatic Toxicology, 2018, 201:1-10 Tang L Z, Liu M Y, Hu C Y, et al. Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos[J]. Environmental Pollution, 2020, 266(Pt 3):115284 Liu M Y, Song S W, Hu C Y, et al. Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutane sulfonate in zebrafish[J]. Environmental Pollution, 2020, 265(Pt B):114832 Slotkin T A, MacKillop E A, Melnick R L, et al. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro[J]. Environmental Health Perspectives, 2008, 116(6):716-722 Hu C Y, Tang L Z, Liu M Y, et al. Probiotic modulation of perfluorobutane sulfonate toxicity in zebrafish:Disturbances in retinoid metabolism and visual physiology[J]. Chemosphere, 2020, 258:127409 Wu L Y, Zeeshan M, Dang Y, et al. Environmentally relevant concentrations of F-53B induce eye development disorders-mediated locomotor behavior in zebrafish larvae[J]. Chemosphere, 2022, 308(Pt 1):136130 Menger F, Pohl J, Ahrens L, et al. Behavioural effects and bioconcentration of per-and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2020, 245:125573 Lou Q Q, Zhang Y F, Zhou Z, et al. Effects of perfluorooctane sulfonate and perfluorobutane sulfonate on the growth and sexual development of Xenopus laevis[J]. Ecotoxicology, 2013, 22(7):1133-1144 Chen L G, Lam J C W, Hu C Y, et al. Perfluorobutane sulfonate exposure skews sex ratio in fish and transgenerationally impairs reproduction[J]. Environmental Science & Technology, 2019, 53(14):8389-8397 Chen L G, Hu C Y, Tsui M M P, et al. Multigenerational disruption of the thyroid endocrine system in marine medaka after a life-cycle exposure to perfluorobutane sulfonate[J]. Environmental Science & Technology, 2018, 52(7):4432-4439 Chen L G, Tsui M M P, Hu C Y, et al. Parental exposure to perfluorobutane sulfonate impairs offspring development through inheritance of paternal methylome[J]. Environmental Science & Technology, 2019, 53(20):12018-12025 Hu C Y, Liu M Y, Tang L Z, et al. Probiotic Lactobacillus rhamnosus modulates the impacts of perfluorobutane sulfonate on oocyte developmental rhythm of zebrafish[J]. The Science of the Total Environment, 2021, 776:145975 Tang L Z, Song S W, Hu C Y, et al. Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish[J]. Chemosphere, 2020, 256:127169 Shi G H, Guo H, Sheng N, et al. Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish[J]. Environmental Pollution, 2018, 243(Pt B):1517-1527 Shi G H, Cui Q Q, Wang J X, et al. Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring[J]. Environmental Pollution, 2019, 249:550-559 Shi G H, Wang J X, Guo H, et al. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish[J]. The Science of the Total Environment, 2019, 665:855-863 Mahapatra C T, Damayanti N P, Guffey S C, et al. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids[J]. Journal of Applied Toxicology, 2017, 37(6):699-708 Liu M Y, Tang L Z, Hu C Y, et al. Antagonistic interaction between perfluorobutane sulfonate and probiotic on lipid and glucose metabolisms in the liver of zebrafish[J]. Aquatic Toxicology, 2021, 237:105897 Cao H M, Zhou Z, Wang L, et al. Screening of potential PFOS alternatives to decrease liver bioaccumulation:Experimental and computational approaches[J]. Environmental Science & Technology, 2019, 53(5):2811-2819 Wang Q Y, Huang J, Liu S, et al. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish[J]. Environment International, 2022, 166:107351 Wang C Y, Zhao Y, Jin Y X. The emerging PFOS alternative OBS exposure induced gut microbiota dysbiosis and hepatic metabolism disorder in adult zebrafish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 230:108703 Gong H J, Du J, Xu J, et al. Perfluorononanoate and perfluorobutane sulfonate induce cardiotoxic effects in zebrafish[J]. Environmental Toxicology and Chemistry, 2022, 41(10):2527-2536 Li Y Y, Liu X L, Zheng X W, et al. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa[J]. The Science of the Total Environment, 2021, 765:144431 Labine L M, Oliveira Pereira E A,Kleywegt S, et al. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna[J]. Environmental Research, 2022, 212(Pt D):113582 Liu W, Yang J, Li J W, et al. Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow[J]. Environmental Pollution, 2020, 263(Pt B):114491 -

计量
- 文章访问数: 2320
- HTML全文浏览数: 2320
- PDF下载数: 185
- 施引文献: 0