常见水生植物对氮磷营养盐的利用和蓄积
Utilization and Accumulation of Nitrogen and Phosphorus Nutrients by Common Aquatic Plants
-
摘要: 以风车草(Cyperus involucratus Rottboll)、菖蒲(Acorus calamus)、美人蕉(Canna indica)、凤眼莲(Eichhornia crassipes)、苦草(Vallisneria natans)和金鱼藻(Ceratophyllum demersum)6种水生植物为研究对象,采用常规耗竭法分析其养分吸收动力学特征,探究水生植物对水体氮磷的利用和蓄积能力,同时还探讨了硫累积及水体pH对水生植物吸收氮磷的影响。结果表明:挺水植物对氮磷营养盐的利用和蓄积能力高于其他水生植物;其中美人蕉对水体总氮(total nitrogen, TN)和总磷(total phosphorus, TP)的蓄积量最多,达到40.95 mg和5.83 mg,菖蒲的最大吸收速率(Imax)比其他水生植物更高,分别为1.428 mg·g-1·d-1和0.313 mg·g-1·d-1;挺水植物对水体TN和TP去除率均超过85%,贡献率达到80%。硫的累积不利于水生植物对氮磷的蓄积和利用;美人蕉对硫的累积量最少,其对氮磷的去除率在6种植物中最高,达到92.29%和86.24%。水生植物在生长过程中会改变水体的pH,而水体pH又会反过来影响水生植物对氮磷的吸收和蓄积。综上可知,挺水植物具有较好氮磷利用与蓄积能力,培养环境中过多的硫及过低的pH均会降低水生植物对氮磷的利用和蓄积。Abstract: Six species of aquatic plants, namely, Cyperus involucratus Rottboll, Acorus calamus, Canna indica, as well as Eichhornia crassipes, Vallisneria natans and Ceratophyllum demersum were studied here. Their nutrient uptake kinetics were determined by the conventional depletion method, which was used to explore their capacity to utilize and accumulate nitrogen and phosphorus from water. Additionally, we discussed the impact of sulfur accumulation and water pH on the uptake of nitrogen and phosphorus by the above-mentioned aquatic plants. The results indicated that the capacity for the utilization and accumulation of nitrogen and phosphorus nutrients of emergent plants was higher than that of other aquatic plants. Among them, Canna indica exhibited the highest accumulation of total nitrogen (TN) and total phosphorus (TP) in the water, reaching up to 40.95 mg and 5.83 mg, respectively. The maximum uptake rate (Imax) of Acorus calamus was found to be higher than that of other aquatic plants, with values up to 1.428 mg·g-1·d-1 and 0.313 mg·g-1·d-1, respectively. The removal rates of TN and TP by emergent plants were all over 85%, contributing over 80%. The accumulation of sulfur is adverse to utilization and accumulation of nitrogen and phosphorus by aquatic plants. Among them, Canna indica with the least accumulation of sulfur showed the highest removal rate of nitrogen and phosphorus, up to 92.29% and 86.24%, respectively. Aquatic plants change the pH of the water during their growth, which in turn affects the uptake and accumulation of nitrogen and phosphorus by aquatic plants. In summary, emergent plants hold a better capacity for utilization and accumulation of nitrogen and phosphorus, and an excess of sulfur and a low pH in the culture system will reduce the utilization and accumulation of nitrogen and phosphorus by aquatic plants.
-
Key words:
- nitrogen and phosphorus /
- sulfur /
- aquatic plants /
- utilization and accumulation /
- uptake kinetics
-
-
生态环境部. 2022年中国生态环境状况公报(摘录)[R]. 北京: 生态环境部, 2023 Jia J N, Xiao H, Peng S T, et al. Study on purification efficiency of novel aquatic plant combinations and characteristics of microbial community disturbance in eutrophic water bodies[J]. Water, 2023, 15(14): 2586 Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review[J]. Hydrobiologia, 2011, 674(1): 133-156 Velusamy K, Periyasamy S, Kumar P S, et al. Advanced techniques to remove phosphates and nitrates from waters: A review[J]. Environmental Chemistry Letters, 2021, 19(4): 3165-3180 Li J Y, Zheng B H, Chen X, et al. The use of constructed wetland for mitigating nitrogen and phosphorus from agricultural runoff: A review[J]. Water, 2021, 13(4): 476 Xu X G, Zhou Y W, Han R M, et al. Eutrophication triggers the shift of nutrient absorption pathway of submerged macrophytes: Implications for the phytoremediation of eutrophic waters[J]. Journal of Environmental Management, 2019, 239: 376-384 Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewater treatment by artificial wetlands[J]. Water Research, 1986, 20(3): 363-368 Olesen A, Jensen S M, Alnoee A B, et al. Nutrient kinetics in submerged plant beds: A mesocosm study simulating constructed drainage wetlands[J]. Ecological Engineering, 2018, 122: 263-270 王伟亚, 张静, 侯红勋, 等. 2种不同根系类型植物脱氮除磷对比研究[J]. 环境保护科学, 2022, 48(6): 110-115 Wang W Y, Zhang J, Hou H X, et al. Research on nitrogen and phosphorus removal by two plants with different root systems[J]. Environmental Protection Science, 2022, 48(6): 110-115(in Chinese)
Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1/2/3): 48-65 Spangler J T, Sample D J, Fox L J, et al. Assessing nitrogen and phosphorus removal potential of five plant species in floating treatment wetlands receiving simulated nursery runoff[J]. Environmental Science and Pollution Research International, 2019, 26(6): 5751-5768 李青, 张琼华, 周卫东, 等. 人工湿地净化污水处理厂低浓度尾水的效果[J]. 水生生物学报, 2022, 46(10): 1456-1465 Li Q, Zhang Q H, Zhou W D, et al. Performance of constructed wetland for low concentration effluent purification from sewage treatment plant[J]. Acta Hydrobiologica Sinica, 2022, 46(10), 1456-1465(in Chinese)
Pavlovic D, Nikolic B, Djurovic S, et al. Chlorophyll as a measure of plant health: Agroecological aspects[J]. Pesticidi i Fitomedicina, 2014, 29(1): 21-34 Epstein E, Hagen C E. A kinetic study of the absorption of alkali cations by barley roots[J]. Plant Physiology, 1952, 27(3): 457-474 张熙灵, 王立新, 刘华民, 等. 芦苇、香蒲和藨草3种挺水植物的养分吸收动力学[J]. 生态学报, 2014, 34(9): 2238-2245 Zhang X L, Wang L X, Liu H M, et al. Kinetics of nutrient uptake by three emergent plants, Phragmites australis, Typha orientalis and Scirpus triqueter[J]. Acta Ecologica Sinica, 2014, 34(9): 2238-2245(in Chinese)
Wu Q, Hu Y, Li S Q, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211: 451-456 Gao H L, Qian X, Wu H F, et al. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body: A case study of Gonghu Bay, Lake Taihu[J]. Ecological Engineering, 2017, 102: 15-23 Li J H, Yang X Y, Wang Z F, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 2015, 179: 1-7 Hoagland D R, Arnon D I. The water-culture method for growing plants without soil[J]. Circular California Agricultural Experiment Station, 1950, 347(2): 201-207 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 47-48 赵梦云, 熊家晴, 郑于聪, 等. 植物收割对人工湿地中污染物去除的长期影响[J]. 水处理技术, 2019, 45(11): 112-116 Zhao M Y, Xiong J Q, Zheng Y C, et al. Long-term effect of plant harvesting on pollutants removal in constructed wetlands[J]. Technology of Water Treatment, 2019, 45(11): 112-116(in Chinese)
Wang H, Li H Y, Ping F, et al. Microbial acclimation triggered loss of soil carbon fractions in subtropical wetlands subjected to experimental warming in a laboratory study[J]. Plant and Soil, 2016, 406(1): 101-116 Jampeetong A, Brix H, Kantawanichkul S. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides)[J]. Aquatic Botany, 2012, 97(1): 10-16 蒋廷惠, 郑绍建, 石锦芹, 等. 植物吸收养分动力学研究中的几个问题[J]. 植物营养与肥料学报, 1995, 1(2): 11-17 Jiang T H, Zheng S J, Shi M Q, et al. Several considerations in kinetic research on nutrients uptake by plants[J]. Plant Nutrition and Fertilizer Sciences, 1995, 1(2): 11-17(in Chinese)
谢静, 吕锡武, 李洁. 6种湿地植物吸收污水中氮和磷的动力学[J]. 环境工程学报, 2016, 10(8): 4067-4072 Xie J, Lü X W, Li J. Uptake dynamics of N and P in polluted water by 6 different wetland plants[J]. Chinese Journal of Environmental Engineering, 2016, 10(8): 4067-4072(in Chinese)
Wu Q, Hu Y, Li S Q, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211: 451-456 王斌, 周亚平. 三种水生植物对模拟污水中氮、磷的生物净化效果[J]. 湖北农业科学, 2014, 53(20): 4835-4837 Wang B, Zhou Y P. Biological purification effects of three aquatic plants on N and P in simulated wastewater[J]. Hubei Agricultural Sciences, 2014, 53(20): 4835-4837(in Chinese)
Gao J Q, Xiong Z T, Zhang J D, et al. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes[J]. Desalination, 2009, 242(1/2/3): 193-204 胡昱, 钱德雪, 王利芬. 沉水植物对水体污染的修复效果研究进展[J]. 南方农业, 2023, 17(7): 82-85 , 89 Hu Y, Qian D X, Wang L F. Research progress on remediation effect of submerged plants on water pollution[J]. South China Agriculture, 2023, 17(7): 82-85, 89(in Chinese)
Sricoth T, Meeinkuirt W, Pichtel J, et al. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel[J]. Environmental Science and Pollution Research International, 2018, 25(6): 5344-5358 冯优, 陈庆锋, 李金业, 等. 水生植物对不同氮磷水平养殖尾水的综合净化能力比较[J]. 农业环境科学学报, 2020, 39(10): 2397-2408 Feng Y, Chen Q F, Li J Y, et al. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater[J]. Journal of Agro-Environment Science, 2020, 39(10): 2397-2408(in Chinese)
Huett D O, Morris S G, Smith G, et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research, 2005, 39(14): 3259-3272 张远, 林佳宁, 王慧, 等. 中国地表水环境质量标准研究[J]. 环境科学研究, 2020, 33(11): 2523-2528 Zhang Y, Lin J N, Wang H, et al. Research on environmental quality standard for surface water[J]. Research of Environmental Sciences, 2020, 33(11): 2523-2528(in Chinese)
Mustafa H M, Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article[J]. Ain Shams Engineering Journal, 2021, 12(1): 355-365 Chislock M F, Doster E, Zitomer R A, et al. Eutrophication: Causes, consequences, and controls in aquatic ecosystems[J]. Nature Education Knowledge, 2013, 4(4): 10-11 Hwang S J. Eutrophication and the ecological health risk[J]. International Journal of Environmental Research and Public Health, 2020, 17(17): 6332 Zeng Y B, Chang F Q, Wen X Y, et al. Seasonal variation in the water quality and eutrophication of Lake Xingyun in southwestern China[J]. Water, 2022, 14(22): 3677 Li D K, Wang L L, Yang Y P, et al. Associations of long-term exposure to ambient air pollution and road traffic noise with sleep health in UK Biobank[J]. Journal of Affective Disorders, 2022, 310: 1-9 Stubbs M. Nutrients in agricultural production: A water quality overview[J]. Congressional Research Service, 2016, 43919: 1-38 Poorter H, Remkes C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate[J]. Oecologia, 1990, 83(4): 553-559 Ng Y S, Chan D J C. Wastewater phytoremediation by Salvinia molesta[J]. Journal of Water Process Engineering, 2017, 15: 107-115 李锋民, 陈琳, 姜晓华, 等. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422 Li F M, Chen L, Jiang X H, et al. The construction of index system for selecting aquatic plant in water purification and ecological restoration[J]. Ecology and Environmental Sciences, 2021, 30(12): 2411-2422(in Chinese)
Xu C, Wang L P, Liu Z H, et al. Nitrogen and phosphorus removal efficiency and algae viability in an immobilized algae and bacteria symbiosis system with pink luminescent filler[J]. Water Science and Technology, 2022, 85(1): 104-115 Liu J T. Nutrient removal capacities of four submerged macrophytes in the Poyang Lake basin[J]. Applied Ecology and Environmental Research, 2016, 14(2): 107-124 胡霄进. 植物根系对人工湿地脱氮除磷性能的影响机制研究[D]. 济南: 山东大学, 2022: 5-7 Hu X J. Study on the mechanism of plant roots affecting nitrogen and phosphorus removal in constructed wetland[D]. Jinan: Shandong University, 2022: 5 -7(in Chinese)
常宝亮, 上官凌飞, 沈志国, 等. 六种沉水植物对三种不同氮磷浓度水体的净化效果[J]. 给水排水, 2021, 57(S1): 230-236 Chang B L, Shang Guan L F, Shen Z G, et al. Purification effect of six submerged macrophytes on three different concentrations of nitrogen and phosphorus[J]. Water & Wastewater Engineering, 2021, 57(S1): 230-236(in Chinese)
陈怡, 张乔雨, 郭春兰, 等. 5种水生植物对富营养化水体净化效果研究[J]. 湖南生态科学学报, 2023, 10(2): 48-54 Chen Y, Zhang Q Y, Guo C L, et al. Study on the purification effect of five aquatic plants on eutrophic water[J]. Journal of Hunan Ecological Science, 2023, 10(2): 48-54(in Chinese)
Wang L G, Han Y Q, Yu H H, et al. Submerged vegetation and water quality degeneration from serious flooding in Liangzi Lake, China[J]. Frontiers in Plant Science, 2019, 10: 1504 Yuan D Y, Meng X H, Duan C Q, et al. Effects of water exchange rate on morphological and physiological characteristics of two submerged macrophytes from Erhai Lake[J]. Ecology and Evolution, 2018, 8(24): 12750-12760 Ye X Q, Meng J L, Zeng B, et al. Submergence causes similar carbohydrate starvation but faster post-stress recovery than darkness in Alternanthera philoxeroides plants[J]. PLoS One, 2016, 11(10): e0165193 吴宇, 高蕾, 曹民杰, 等. 植物硫营养代谢、调控与生物学功能[J]. 植物学报, 2007, 24(6): 735-761 Wu Y, Gao L, Cao M J, et al. Plant sulfur metabolism, regulation, and biological functions[J]. Chinese Bulletin of Botany, 2007, 24(6): 735-761(in Chinese)
Li Q, Gao Y, Yang A. Sulfur homeostasis in plants[J]. International Journal of Molecular Science, 2020, 21(23): 124-126 李平, 聂浩, 郎漫, 等. 不同氮肥配施生物炭对镉污染土壤青菜镉吸收的影响[J]. 环境科学, 2023, 44(8): 4489-4496 Li P, Nie H, Lang M, et al. Effects of combined application of different nitrogen fertilizers and biochar on cadmium uptake bypakchoi (Brassica chinensis L.) in cadmium contaminated soil[J]. Environmental Science, 2023, 44(8): 4489-4496(in Chinese)
Wallace A. Relationships among nitrogen, silicon, and heavy metal uptake by plants[J]. Soil Science, 1989, 147(6): 457-460 欧丹玲. 不同沉水植物配置模式对水质净化效果与案例研究[D]. 长沙: 中南林业科技大学, 2019: 35-37 Ou D L. Effect and case study of different submerged plant configuration modes on water purification[D]. Changsha: Central South University of Forestry & Technology, 2019: 35 -37(in Chinese)
da Silva Cerozi B, Fitzsimmons K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution[J]. Bioresource Technology, 2016, 219: 778-781 -

计量
- 文章访问数: 619
- HTML全文浏览数: 619
- PDF下载数: 106
- 施引文献: 0