氯虫苯甲酰胺及其代谢物IN-EQW78对蚯蚓氧化应激及繁殖能力的影响
Effects of Chlorantraniliprole and Its Metabolite IN-EQW78 on Antioxidant and Reproductive Capacity of Earthworms
-
摘要: 为明确氯虫苯甲酰胺(CAP)及其代谢物氯虫苯甲酰胺脱水环化物(IN-EQW78)对蚯蚓毒性效应的差异,开展了CAP和代谢物IN-EQW78对蚯蚓的56 d单一暴露实验,探讨2种化合物分别对蚯蚓氧化应激及繁殖能力的影响。结果表明,5 mg·kg-1的CAP暴露14 d后,过氧化氢酶(CAT)活性显著上升,超氧化物歧化酶(SOD)活性在28 d时明显增强;IN-EQW78暴露7 d后,SOD和谷胱甘肽转移酶(GSH-ST)活性增强,而CAT活性降低。IN-EQW78比CAP会更早地引起蚯蚓氧化应激效应,并引发更大的氧化损伤。5 mg·kg-1的CAP处理减少了蚯蚓精子数量,破坏卵巢结构,对生殖系统造成损伤,并进一步抑制蚯蚓繁殖,导致56 d时幼蚓数量显著下降;而IN-EQW78(≥0.04 mg·kg-1)处理对卵巢无损伤,反而引起蚯蚓精子数量增加,从而促进蚯蚓繁殖,显著提高了56 d时幼蚓及蚓茧数量。本研究揭示了CAP及其代谢物对蚯蚓的潜在影响,为农业生产中CAP的风险评估提供了科学依据。Abstract: In this study, earthworms (Eisenia fetida) were singly exposed to chlorantraniliprole (CAP) and its metabolite (chlorantraniliprole dehydrated cyanide, IN-EQW78) for 56 days to investigate the toxic effects on the antioxidant system and reproduction ability of earthworms, aiming to indicate the distinctions between CAP and IN-EQW78. The results showed that the catalase (CAT) and superoxide dismutase (SOD) activities significantly increased after exposure to 5 mg·kg-1 CAP for 14 d and 28 d, respectively. After exposure to IN-EQW78 for 7 d, the activities of SOD and glutathione transferase (GSH-ST) were enhanced, while CAT activity was inhibited. Compared with CAP, IN-EQW78 induced oxidative stress in the earlier stage and triggered greater oxidative damage. In addition, exposure to 5 mg·kg-1 CAP reduced the number of earthworm spermatozoa, destroyed the structure of ovary, caused damage to the reproductive system, and further inhibited the reproduction of earthworms, resulting in a significant decrease in the number of juvenile earthworms at 56 d. By contrast, exposure to IN-EQW78 (≥0.04 mg·kg-1) induced the increase of the number of spermatozoa without any damage to the ovary, thereby facilitating the reproduction of the earthworms, and significantly enhanced the number of juvenile earthworms and cocoon numbers at 56 d. This study revealed the potential effects of CAP and its metabolites on earthworms, and provided a scientific basis for risk assessment of CAP in agricultural production.
-
Key words:
- chlorantraniliprole /
- IN-EQW78 /
- earthworms (Eisenia fetida) /
- oxidative damage /
- reproductive toxicity
-
-
Padmasri A, Srinivas C, Vijaya Lakshmi K, et al. Evaluation of novel insecticides as seed treatments to control rice weevil[Sitophilus oryzae (Linnaeus)] on maize seeds[J]. International Journal of Current Microbiology and Applied Sciences, 2019, 8(9): 765-774 Deore J S, Borikar P S, Yadav G A, et al. Efficacy of newer insecticides against bollworm complex in cotton[J]. Pestology, 2010(2): 34 Jyoshna M, Yadav U. Efficacy of selected insecticides with botanicals and bio-agents against diamondback moth, Plutella xylostella (L.) in cabbage, Brassica oleracea var capitata (L.)[J]. International Journal of Environment and Climate Change, 2023, 13(9): 2129-2134 Ruiu L, Lentini A. Sustainable silage maize integrated protection against the European corn borer Ostrinia nubilalis and the corn earworm Helicoverpa armigera employing the farm irrigation system[J]. Agronomy, 2022, 12(2): 362 程世兴. 东至县胜利镇水稻“一种两收”栽培技术要点[J]. 南方农业, 2023, 17(16): 12-14 Cheng S X. Key points of rice cultivation techniques of “one kind and two harvests” in Shengli Town, Dongzhi County[J]. South China Agriculture, 2023, 17(16): 12-14(in Chinese)
王宁, 王俪澜, 葛亚菲, 等. 2种种子处理悬浮剂防治小麦蛴螬的田间药效评价[J]. 农药, 2023, 62(9): 689-692 Wang N, Wang L L, Ge Y F, et al. Efficacy evaluation of 2 suspension concentrates for seed treatment to control wheat grubs in the field[J]. Agrochemicals, 2023, 62(9): 689-692(in Chinese)
Liu P P, Zhang J X, Shen H F, et al. Efficacy of transplant insecticides against black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in tobacco[J]. Crop Protection, 2023, 171: 106283 于居龙, 张国, 张新凤, 等. 氯虫苯甲酰胺与杀虫单复配处理水稻种子对稻纵卷叶螟的防效及持效机理[J]. 农药学学报, 2024, 26(1): 114-122 Yu J L, Zhang G, Zhang X F, et al. Control efficacy and long-term mechanism of chlorantraniliprole and monosultap co-treatment on rice seeds against Cnaphalocrocis medinalis[J]. Chinese Journal of Pesticide Science, 2024, 26(1): 114-122(in Chinese)
李红红, 王彦辉, 韦典, 等. 氯虫苯甲酰胺在甘蔗及土壤中的残留消解动态[J]. 农药学学报, 2016, 18(1): 101-106 Li H H, Wang Y H, Wei D, et al. Residues and dissipation of chlorantraniliprole in sugarcane and soil[J]. Chinese Journal of Pesticide Science, 2016, 18(1): 101-106(in Chinese)
方晓航, 仇荣亮. 农药在土壤环境中的行为研究[J]. 土壤与环境, 2002, 11(1): 94-97 Fang X H, Qiu R L. Behavior of pesticide in soil environment[J]. Ecology and Environmental Sciences, 2002, 11(1): 94-97(in Chinese)
Lavtižar V, Berggren K, Trebše P, et al. Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates[J]. Chemosphere, 2016, 159: 473-479 翟华博. 200克/升氯虫苯甲酰胺悬浮剂[J]. 农业知识(乡村季风), 2014(8): 42 -43
毛赛飞, 吴振我, 潘育东, 等. 夏季香菇防治菇蚊的高效安全药剂筛选[J]. 食药用菌, 2017, 25(1): 65-66 Mao S F, Wu Z W, Pan Y D, et al. Screening of high-efficient and safe pesticides for mushrooms to control mushroom mosquitoes in summer[J]. Edible and Medicinal Mushrooms, 2017, 25(1): 65-66(in Chinese)
Yu S M, Wang Z K, Zhang L Y, et al. Possible changes in trade-off strategy in female lizards (Eremias argus) during hibernation following exposure to chlorantraniliprole: Impact on the HPG axis and the energy mobilization[J]. Pesticide Biochemistry and Physiology, 2022, 184: 105059 Meng Z Y, Cui J J, Liu L, et al. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype[J]. Pesticide Biochemistry and Physiology, 2022, 187: 105194 Kumar R, Singh D. Insecticide-tolerant bacterial population in Eisenia fetida’s gut and vermicast exposed to chlorantraniliprole and fipronil[J]. Applied Biological Research, 2022, 24(3): 273-279 Liu T, Chen D, Li Y Q, et al. Enantioselective bioaccumulation and toxicity of the neonicotinoid insecticide dinotefuran in earthworms (Eisenia fetida)[J]. Journal of Agricultural and Food Chemistry, 2018, 66(17): 4531-4540 Lanno R, Wells J, Conder J, et al. The bioavailability of chemicals in soil for earthworms[J]. Ecotoxicology and Environmental Safety, 2004, 57(1): 39-47 陈国峰, 刘峰, 张晓波, 等. 氯虫苯甲酰胺在大豆和土壤中的残留及降解行为[J]. 农业环境科学学报, 2016, 35(5): 894-900 Chen G F, Liu F, Zhang X B, et al. Residue analysis and degradation dynamics of chlorantraniliprole in soybean and soil[J]. Journal of Agro-Environment Science, 2016, 35(5): 894-900(in Chinese)
隋晓斐, 马延军, 崔巧利. 氯虫苯甲酰胺在室内土壤中的降解动态研究[J]. 中华卫生杀虫药械, 2015, 21(3): 251-253 Sui X F, Ma Y J, Cui Q L. Degradation of chlorantraniliprole in soil under laboratory conditions[J]. Chinese Journal of Hygienic Insecticides & Equipments, 2015, 21(3): 251-253(in Chinese)
王廷廷, 余向阳, 沈燕, 等. 生物质炭施用对土壤中氯虫苯甲酰胺吸附及消解行为的影响[J]. 环境科学, 2012, 33(4): 1339-1345 Wang T T, Yu X Y, Shen Y, et al. Impact of biochar amendment on the sorption and dissipation of chlorantraniliprole in soils[J]. Environmental Science, 2012, 33(4): 1339-1345(in Chinese)
Lankadurai B P, Nagato E G, Simpson M J. Environmental metabolomics: An emerging approach to study organism responses to environmental stressors[J]. Environmental Reviews, 2013, 21(3): 180-205 Sinclair C J, Boxall A B A. Assessing the ecotoxicity of pesticide transformation products[J]. Environmental Science & Technology, 2003, 37(20): 4617-4625 Boxall A B A, Sinclair C J, Fenner K, et al. When synthetic chemicals degrade in the environment[J]. Environmental Science & Technology, 2004, 38(19): 368A-375A Pietrzak D, Kania J, Kmiecik E, et al. Fate of selected neonicotinoid insecticides in soil-water systems: Current state of the art and knowledge gaps[J]. Chemosphere, 2020, 255: 126981 Organization for Economic Co-operation and Development (OECD). Test No. 222: Earthworm reproduction test (Eisenia fetida/Eisenia andrei)[R]. Paris: OECD, 2004 Malhat F M. Determination of chlorantraniliprole residues in grape by high-performance liquid chromatography[J]. Food Analytical Methods, 2012, 5(6): 1492-1496 Dong F S, Xu J, Liu X G, et al. Determination of chlorantraniliprole residues in corn and soil by UPLC-ESI-MS/MS and its application to a pharmacokinetic study[J]. Chromatographia, 2011, 74(5): 399-406 Zhang J M, Chai W G, Wu Y L. Residues of chlorantraniliprole in rice field ecosystem[J]. Chemosphere, 2012, 87(2): 132-136 Sack M N, Fyhrquist F Y, Saijonmaa O J, et al. Basic biology of oxidative stress and the cardiovascular system: Part 1 of a 3-part series[J]. Journal of the American College of Cardiology, 2017, 70(2): 196-211 Manna S, Ray A, Mukherjee S, et al. Nano zinc oxide induced lipid peroxidation, oxidative stress, genotoxicity, phagocytic alteration, and detoxification response in the coelomocytes of an anecic earthworm of India[J]. Applied Soil Ecology, 2023, 190: 105024 He F L, Wan J Q, Chu S S, et al. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels[J]. Science of the Total Environment, 2022, 819: 153167 Zhong W J, Zhu L Y, Chen P Y, et al. The combined effects of graphene oxide and bisphenol A on oxidative damage in early development of zebrafish[J]. Chinese Science Bulletin, 2019, 64(21): 2199-2206 Dromard Y, Arango-Lievano M, Fontanaud P, et al. Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress[J]. Neurobiology of Stress, 2021, 15: 100402 Liu T, Wang X G, Chen D, et al. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida)[J]. Ecotoxicology and Environmental Safety, 2018, 150: 18-25 Feng W R, Su S Y, Song C Y, et al. Effects of copper exposure on oxidative stress, apoptosis, endoplasmic reticulum stress, autophagy and immune response in different tissues of Chinese mitten crab (Eriocheir sinensis)[J]. Antioxidants, 2022, 11(10): 2029 Kelly K A, Havrilla C M, Brady T C, et al. Oxidative stress in toxicology: Established mammalian and emerging piscine model systems[J]. Environmental Health Perspectives, 1998, 106(7): 375-384 Zhang W J, Xia X M, Wang J H, et al. Oxidative stress and genotoxicity of nitenpyram to earthworms (Eisenia foetida)[J]. Chemosphere, 2021, 264(Pt 2): 128493 Zhu L, Li B, Wu R L, et al. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils[J]. Chemosphere, 2020, 255: 126982 Soula M, Weber R A, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nature Chemical Biology, 2020, 16(12): 1351-1360 Qiao Z H, Zhang F W, Yao X F, et al. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida)[J]. Chemosphere, 2019, 236: 124328 白桂芬, 李冰, 霍树政. 多菌灵对蚯蚓体内3种解毒酶活性的影响[J]. 贵州农业科学, 2014, 42(12): 177-179 Bai G F, Li B, Huo S Z. Effect of carbendazim on activity of three detoxifying enzymes in earthworm[J]. Guizhou Agricultural Sciences, 2014, 42(12): 177-179(in Chinese)
Ma L L, Ma C, Shi Z M, et al. Effects of fluoranthene on the growth, bioavailability and anti-oxidant system of Eisenia fetida during the ageing process[J]. European Journal of Soil Biology, 2012, 50: 21-27 郭子毓, 徐玉艳, 代恒美, 等. 常见环境污染物致斑马鱼机体氧化应激的研究进展[J]. 环境化学, 2024, 43(1): 33-46 Guo Z Y, Xu Y Y, Dai H M, et al. Research progress on oxidative stress of zebrafish caused by common environmental pollutants[J]. Environmental Chemistry, 2024, 43(1): 33-46(in Chinese)
Luberda Z. The role of glutathione in mammalian gametes[J]. Reproductive Biology, 2005, 5(1): 5-17 Zhao W T, Teng M M, Zhang J, et al. Insights into the mechanisms of organic pollutant toxicity to earthworms: Advances and perspectives[J]. Environmental Pollution, 2022, 303: 119120 Xiao N W, Song Y, Ge F, et al. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil[J]. Chemosphere, 2006, 65(6): 907-912 Muangphra P, Tharapoom K, Euawong N, et al. Chronic toxicity of commercial chlorpyrifos to earthworm Pheretima peguana[J]. Environmental Toxicology, 2016, 31(11): 1450-1459 Gao Y H, Li X M, Guo J J, et al. Reproductive responses of the earthworm (Eisenia fetida) to antiparasitic albendazole exposure[J]. Chemosphere, 2015, 120: 1-7 Huslystyi A O, Gasso V Y, Yermolenko S V, et al. Characteristics of the toxic effect of imidacloprid on the state of Eisenia fetida (Annelida, Clitellata, Lumbricidae)[J]. Ecology and Noospherology, 2021, 32(1): 41-46 Babić S, Barišić J, Bielen A, et al. Multilevel ecotoxicity assessment of environmentally relevant bisphenol A concentrations using the soil invertebrate Eisenia fetida[J]. Journal of Hazardous Materials, 2016, 318: 477-486 王凯. 新烟碱类杀虫剂对蚯蚓毒性及作用机制研究[D]. 北京: 中国农业大学, 2015: 80-81 Wang K. Study on toxicity and mechanism of neonicotinoid insecticides to earthworm[D]. Beijing: China Agricultural University, 2015: 80 -81(in Chinese)
姜继韶, 侯睿, 崔慧林, 等. 基于Meta分析的蚯蚓堆肥对堆肥质量和重金属的影响效应[J]. 环境科学, 2024, 45(5): 3047-3058 Jiang J S, Hou R, Cui H L, et al. Effects of vermicomposting on compost quality and heavy metals: A meta-analysis[J]. Environmental Science, 2024, 45(5): 3047-3058(in Chinese)
-

计量
- 文章访问数: 609
- HTML全文浏览数: 609
- PDF下载数: 155
- 施引文献: 0