环境微生物耐药阻控研究进展

高梦娣, 朱琳, 汪美贞, 李娜. 环境微生物耐药阻控研究进展[J]. 生态毒理学报, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
引用本文: 高梦娣, 朱琳, 汪美贞, 李娜. 环境微生物耐药阻控研究进展[J]. 生态毒理学报, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
Gao Mengdi, Zhu Lin, Wang Meizhen, Li Na. Progress on Antibiotic Resistance Control of Environmental Microorganisms[J]. Asian journal of ecotoxicology, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
Citation: Gao Mengdi, Zhu Lin, Wang Meizhen, Li Na. Progress on Antibiotic Resistance Control of Environmental Microorganisms[J]. Asian journal of ecotoxicology, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002

环境微生物耐药阻控研究进展

    作者简介: 高梦娣(1997-),女,硕士研究生,研究方向为土壤生物化学与修复技术,E-mail:1040632145@qq.com
    通讯作者: 李娜,E-mail:coincidence625@163.com
  • 基金项目:

    国家自然科学基金资助项目(22306164,U21A20292,22076167);浙江省自然科学基金资助项目(LQ23B070004);浙江工商大学“数字+”学科建设项目(SZJ2022B015)

  • 中图分类号: X171.5

Progress on Antibiotic Resistance Control of Environmental Microorganisms

    Corresponding author: Li Na, coincidence625@163.com
  • Fund Project:
  • 摘要: 世界卫生组织将微生物耐药视为21世纪全球健康的主要挑战之一。根据One Health观念,微生物耐药可以跨越生态边界在环境、动物、人体中传播,给生态安全和人类健康带来威胁。耐药菌株的快速传播和演变使得传统抗生素治疗效果逐渐减弱。因此,需要研究环境中耐药现状,提出缓解环境微生物耐药的策略。在该综述中,我们重点介绍缓解微生物耐药的策略,具体包括化学阻控、生物阻控、CRISPR-Cas系统应用和群落调节等手段,并对这些策略的优缺点进行了评述。这些策略有望遏制全球耐药的恶化及蔓延。
  • 加载中
  • Darby E M, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited[J]. Nature Reviews Microbiology, 2023, 21(5): 280-295
    Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis[J]. Lancet, 2022, 399(10325): 629-655
    Robinson T P, Bu D P, Carrique-Mas J, et al. Antibiotic resistance is the quintessential One Health issue[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110(7): 377-380
    Wernli D, Jørgensen P S, Morel C M, et al. Mapping global policy discourse on antimicrobial resistance[J]. BMJ Global Health, 2017, 2(2): e000378
    Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians[J]. Journal of Anaesthesiology, Clinical Pharmacology, 2017, 33(3): 300-305
    Liao P, Zhan Z Y, Dai J, et al. Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study[J]. Chemical Engineering Journal, 2013, 228: 496-505
    王芳, 豆庆圆, 付玉豪, 等. 土壤中有机肥源抗生素抗性基因环境归趋与风险管理研究进展[J]. 农业环境科学学报, 2022, 41(12): 2563-2576

    Wang F, Dou Q Y, Fu Y H, et al. Environmental fate and risk management of manure-borne antibiotic resistance genes in soil: A review[J]. Journal of Agro-Environment Science, 2022, 41(12): 2563-2576(in Chinese)

    Martínez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365-367
    Tang K L, Caffrey N P, Nóbrega D B, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis[J]. The Lancet Planetary Health, 2017, 1(8): e316-e327
    Enne V I, Livermore D M, Stephens P, et al. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction[J]. Lancet, 2001, 357(9265): 1325-1328
    Hernando-Amado S, Coque T M, Baquero F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives[J]. Nature Microbiology, 2019, 4(9): 1432-1442
    Ali N, Lin Y F, Jiang L G, et al. Biochar and manure applications differentially altered the class 1 integrons, antimicrobial resistance, and gene cassettes diversity in paddy soils[J]. Frontiers in Microbiology, 2022, 13: 943880
    Yaashikaa P R, Kumar P S, Varjani S, et al. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy[J]. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28: e00570
    Guo X X, Liu H T, Zhang J. The role of biochar in organic waste composting and soil improvement: A review[J]. Waste Management, 2020, 102: 884-899
    Sun F L, Xu Z T, Fan L L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge[J]. Journal of Environmental Management, 2021, 300: 113754
    He X Q, Xiong J P, Yang Z L, et al. Exploring the impact of biochar on antibiotics and antibiotics resistance genes in pig manure aerobic composting through untargeted metabolomics and metagenomics[J]. Bioresource Technology, 2022, 352: 127118
    Awasthi M K, Liu H, Liu T, et al. Effect of biochar addition on the dynamics of antibiotic resistant bacteria during the pig manure composting[J]. Science of the Total Environment, 2022, 814: 152688
    Wang C H, Wang Y F, Yan S, et al. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes[J]. Bioresource Technology, 2023, 367: 128253
    Duan M L, Li H C, Gu J, et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce[J]. Environmental Pollution, 2017, 224: 787-795
    Wu C Y, Fu L Y, Li H Q, et al. Using biochar to strengthen the removal of antibiotic resistance genes: Performance and mechanism[J]. Science of the Total Environment, 2022, 816: 151554
    Wu Y J, Yan H C, Zhu X M, et al. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer[J]. Environmental Science & Technology, 2022, 56(17): 12573-12583
    Liang J L, Shan C, Zhang X, et al. Bactericidal mechanism of BiOI-AgI under visible light irradiation[J]. Chemical Engineering Journal, 2015, 279: 277-285
    Xie M M, Gao M, Yun Y, et al. Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles[J]. Angewandte Chemie (International Ed in English), 2023, 62(17): e202217345
    Garland M, Loscher S, Bogyo M. Chemical strategies to target bacterial virulence[J]. Chemical Reviews, 2017, 117(5): 4422-4461
    He J, Hong M, Xie W Q, et al. Progress and prospects of nanomaterials against resistant bacteria[J]. Journal of Controlled Release, 2022, 351: 301-323
    Nederberg F, Zhang Y, Tan J P, et al. Biodegradable nanostructures with selectivelysis of microbial membranes[J]. Nature Chemistry, 2011, 3(5): 409-414
    Zhao H R, Wang M L, Cui Y T, et al. Can we arrest the evolution of antibiotic resistance? The differences between the effects of silver nanoparticles and silver ions[J]. Environmental Science & Technology, 2022, 56(8): 5090-5101
    Kümmerer K, Menz J, Schubert T, et al. Biodegradability of organic nanoparticles in the aqueous environment[J]. Chemosphere, 2011, 82(10): 1387-1392
    Zhou Z R, Lian Y L, Zhu L, et al. Platinum nanoparticles prevent the resistance of Pseudomonas aeruginosa to ciprofloxacin and imipenem: Mechanism insights[J]. ACS Nano, 2023, 17(24): 24685-24695
    Chen P P, Yu X F, Zhang J Y, et al. New and traditional methods for antibiotic resistance genes removal: Constructed wetland technology and photocatalysis technology[J]. Frontiers in Microbiology, 2023, 13: 1110793
    Moreira N F F, Narciso-da-Rocha C, Polo-López M I, et al. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater[J]. Water Research, 2018, 135: 195-206
    Guo M T, Tian X B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation[J]. Journal of Hazardous Materials, 2019, 380: 120877
    Zhou Z R, Shen Z R, Cheng Z H, et al. Mechanistic insights for efficient inactivation of antibiotic resistance genes: A synergistic interfacial adsorption and photocatalytic-oxidation process[J]. Science Bulletin, 2020, 65(24): 2107-2119
    Ren S J, Boo C, Guo N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15): 8666-8673
    Ji H, Cai Y W, Wang Z X, et al. Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability[J]. Water Research, 2022, 221: 118808
    Garvey N, St John A C, Witkin E M. Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells[J]. Journal of Bacteriology, 1985, 163(3): 870-876
    Yin H L, Chen X F, Li G Y, et al. Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation?[J]. Applied Catalysis B: Environmental, 2021, 287: 119977
    Shatzkes K, Singleton E, Tang C, et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs[J]. mBio, 2016, 7(6): e01847-16
    Atterbury R J, Tyson J. Predatory bacteria as living antibiotics: Where are we now?[J]. Microbiology (Reading, England), 2021, 167(1): 1
    Lambina V A, Afinogenova A V, Romaǐ Penabad S, et al. Micavibrio admirandus gen. et sp. nov[J]. Mikrobiologiia, 1982, 51(1): 114-117
    Thiery S, Kaimer C. The predation strategy of Myxococcus xanthus[J]. Frontiers in Microbiology, 2020, 11: 2
    Arend K I, Schmidt J J, Bentler T, et al. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms[J]. Applied and Environmental Microbiology, 2021, 87(5): e02382-20
    Thiery S, Turowski P, Berleman J E, et al. The predatory soil bacterium Myxococcus xanthus combines a Tad- and an atypical type 3-like protein secretion system to kill bacterial cells[J]. Cell Reports, 2022, 40(11): 111340
    Shanks R M, Davra V R, Romanowski E G, et al. An eye to a kill: Using predatory bacteria to control Gram-negative pathogens associated with ocular infections[J]. PLoS One, 2013, 8(6): e66723
    Dwidar M, Monnappa A K, Mitchell R J. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus[J]. BMB Reports, 2012, 45(2): 71-78
    Saralegui C, Herencias C, Halperin A V, et al. Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates[J]. Scientific Reports, 2022, 12(1): 10523
    Pérez-Acevedo G, Bosch-Alcaraz A, Torra-Bou J E. Larval therapy for treatment of chronic wounds colonized by multi-resistant pathogens in a pediatric patient: A case study[J]. Journal of Wound, Ostomy, and Continence Nursing, 2022, 49(4): 373-378
    Negus D, Moore C, Baker M, et al. Predator versus pathogen: How does predatory Bdellovibrio bacteriovorus interface with the challenges of killing Gram-negative pathogens in a host setting?[J]. Annual Review of Microbiology, 2017, 71: 441-457
    Keen E C. A century of phage research: Bacteriophages and the shaping of modern biology[J]. BioEssays, 2015, 37(1): 6-9
    Pratama A A, van Elsas J D. The 'neglected’ soil virome-potential role and impact[J]. Trends in Microbiology, 2018, 26(8): 649-662
    MacNair C R, Rutherford S T, Tan M W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens[J]. Nature Reviews Microbiology, 2024, 22(5): 262-275
    Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5): 730-733
    Nick J A, Dedrick R M, Gray A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection[J]. Cell, 2022, 185(11): 1860-1874.e12
    Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial[J]. The Lancet Infectious Diseases, 2019, 19(1): 35-45
    Leitner L, Ujmajuridze A, Chanishvili N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomised, placebo-controlled, double-blind clinical trial[J]. The Lancet Infectious Diseases, 2021, 21(3): 427-436
    Rodríguez-Rubio L, Jofre J, Muniesa M. Is genetic mobilization considered when using bacteriophages in antimicrobial therapy?[J]. Antibiotics (Basel, Switzerland), 2017, 6(4): 32
    Morris T C, Reyneke B, Havenga B, et al. Simultaneous Bdellovibrio bacteriovorus: Bacteriophage dosing with SODIS for treatment of environmental water sources[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112359
    Hobley L, Summers J K, Till R, et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situ ations where single predation cannot[J]. Journal of Bacteriology, 2020, 202(6): e00629-19
    Shuai X Y, Zhou Z C, Ba X L, et al. Bacteriophages: Vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems?[J]. Water Research, 2024, 248: 120833
    Marchfelder A. Special focus CRISPR-cas[J]. RNA Biology, 2013, 10(5): 655-658
    Wu Y Y, Battalapalli D, Hakeem M J, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections[J]. Journal of Nanobiotechnology, 2021, 19(1): 401
    Hao M J, He Y Z, Zhang H F, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistantEnterobacteriaceae[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(9): e00843-20
    He Y Z, Kuang X, Long T F, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli[J]. Journal of Antimicrobial Chemotherapy, 2021, 77(1): 74-82
    Li P S, Wan P, Zhao R N, et al. Targeted elimination of blaNDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system[J]. Infection and Drug Resistance, 2022, 15: 1707-1716
    Almendros C, Nobrega F L, McKenzie R E, et al. Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation[J]. Nucleic Acids Research, 2019, 47(10): 5223-5230
    Park J Y, Moon B Y, Park J W, et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus[J]. Scientific Reports, 2017, 7: 44929
    Gomaa A A, Klumpe H E, Luo M L, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems[J]. mBio, 2014, 5(1): e00928-13
    李虎良, 张蕾. 抗生素耐药性的分子机制及抑菌策略[J]. 中国生物化学与分子生物学报, 2024, 40(6): 759-769

    Li H L, Zhang L. Molecular mechanism and antimicrobial strategy of antibiotic resistance[J]. Chinese Journal of Biochemistry and Molecular Biology, 2024, 40(6): 579-769(in Chinese)

    Esparza I, Jiménez-Moreno N, Bimbela F, et al. Fruit and vegetable waste management: Conventional and emerging approaches[J]. Journal of Environmental Management, 2020, 265: 110510
    De Corato U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy[J]. Science of the Total Environment, 2020, 738: 139840
    Lin D, Huang D, Zhang J H, et al. Reduction of antibiotic resistance genes (ARGs) in swine manure-fertilized soil via fermentation broth from fruit and vegetable waste[J]. Environmental Research, 2022, 214(Pt 1): 113835
    Lin D, Zhu L, Yao Y L, et al. The ecological and molecular mechanism underlying effective reduction of antibiotic resistance genes pollution in soil by fermentation broth from fruit and vegetable waste[J]. Journal of Hazardous Materials, 2023, 451: 131201
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览数:  987
  • PDF下载数:  183
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-04-16
高梦娣, 朱琳, 汪美贞, 李娜. 环境微生物耐药阻控研究进展[J]. 生态毒理学报, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
引用本文: 高梦娣, 朱琳, 汪美贞, 李娜. 环境微生物耐药阻控研究进展[J]. 生态毒理学报, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
Gao Mengdi, Zhu Lin, Wang Meizhen, Li Na. Progress on Antibiotic Resistance Control of Environmental Microorganisms[J]. Asian journal of ecotoxicology, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002
Citation: Gao Mengdi, Zhu Lin, Wang Meizhen, Li Na. Progress on Antibiotic Resistance Control of Environmental Microorganisms[J]. Asian journal of ecotoxicology, 2024, 19(5): 40-49. doi: 10.7524/AJE.1673-5897.20240416002

环境微生物耐药阻控研究进展

    通讯作者: 李娜,E-mail:coincidence625@163.com
    作者简介: 高梦娣(1997-),女,硕士研究生,研究方向为土壤生物化学与修复技术,E-mail:1040632145@qq.com
  • 1. 浙江工商大学环境科学与工程学院, 杭州 310018;
  • 2. 浙江省固体废物处理与资源化重点实验室, 杭州 310018;
  • 3. 中国海洋大学环境科学与工程学院, 青岛 260000
基金项目:

国家自然科学基金资助项目(22306164,U21A20292,22076167);浙江省自然科学基金资助项目(LQ23B070004);浙江工商大学“数字+”学科建设项目(SZJ2022B015)

摘要: 世界卫生组织将微生物耐药视为21世纪全球健康的主要挑战之一。根据One Health观念,微生物耐药可以跨越生态边界在环境、动物、人体中传播,给生态安全和人类健康带来威胁。耐药菌株的快速传播和演变使得传统抗生素治疗效果逐渐减弱。因此,需要研究环境中耐药现状,提出缓解环境微生物耐药的策略。在该综述中,我们重点介绍缓解微生物耐药的策略,具体包括化学阻控、生物阻控、CRISPR-Cas系统应用和群落调节等手段,并对这些策略的优缺点进行了评述。这些策略有望遏制全球耐药的恶化及蔓延。

English Abstract

参考文献 (72)

返回顶部

目录

/

返回文章
返回