有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析

艾思木巴提·叶尔肯别克, 宋亚琼, 亓逢源, 王一飞, 乔敏, 朱永官. 有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析[J]. 生态毒理学报, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
引用本文: 艾思木巴提·叶尔肯别克, 宋亚琼, 亓逢源, 王一飞, 乔敏, 朱永官. 有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析[J]. 生态毒理学报, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
Aisimubati·Yeerkenbieke, Song Yaqiong, Qi Fengyuan, Wang Yifei, Qiao Min, Zhu Yongguan. Analysis of Potential Human and Zoonotic Pathogens and Their Resistance to Antibiotics in Organic Fertilizer Applied Soil-Vegetable System[J]. Asian journal of ecotoxicology, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
Citation: Aisimubati·Yeerkenbieke, Song Yaqiong, Qi Fengyuan, Wang Yifei, Qiao Min, Zhu Yongguan. Analysis of Potential Human and Zoonotic Pathogens and Their Resistance to Antibiotics in Organic Fertilizer Applied Soil-Vegetable System[J]. Asian journal of ecotoxicology, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001

有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析

    作者简介: 艾思木巴提·叶尔肯别克(1996-),女,硕士研究生,研究方向为土壤生物学,E-mail:18810373803@163.com
    通讯作者: 乔敏,E-mail:minqiao@rcees.ac.cn; 
  • 基金项目:

    国家自然科学基金资助项目(21936006);国家重点研发计划课题(2020YFC1806902)

  • 中图分类号: X171.5

Analysis of Potential Human and Zoonotic Pathogens and Their Resistance to Antibiotics in Organic Fertilizer Applied Soil-Vegetable System

    Corresponding author: Qiao Min, minqiao@rcees.ac.cn
  • Fund Project:
  • 摘要: 畜禽粪便类有机肥中含有大量的人畜病原菌和抗生素抗性基因(antibiotic resistance genes, ARGs),施入农田后部分病原菌仍能继续存活并繁殖,且可能污染所种植的蔬菜,尤其是一些具有耐药性的人畜病原菌经食物链传递后将对人体健康造成巨大威胁。然而,当前大量的研究仅基于单纯的分离培养或高通量测序技术,对有机肥施用土壤-蔬菜系统中的人畜病原菌及其携带的毒力因子基因(virulence factor genes, VFGs)与ARGs认识有限。因此,本研究针对典型的长期施用有机肥的土壤-蔬菜系统,采集有机肥、施肥土及该土壤上种植的叶类蔬菜,如鸡毛菜、菜心、油麦菜和白菜等,结合传统分离培养及全基因组测序(whole genome sequencing, WGS)技术,利用生物信息学方法对分离菌株进行分类学及基因组注释,探究人畜病原菌的分布以及VFGs和ARGs的携带情况。结果表明在该施用有机肥的土壤-蔬菜系统中分离检测到42株人畜病原菌,其中37株属于肠杆菌科,5株属于假单孢菌科,主要的菌株包括大肠杆菌、克雷伯氏菌、假单胞菌和柠檬酸杆菌等,其中,大肠杆菌在土壤环境中显著富集,假单胞菌和柠檬酸杆菌主要分布在蔬菜根际及叶际。此外,全基因组测序提供了病原菌遗传信息,表明了人畜病原菌可能具有潜在的攻击性和代谢活性,携带有效应子、粘附性、生物膜、免疫调节性、侵袭性及毒素相关的VFGs。更重要的是,这些人畜病原菌均携带多种ARGs,这些ARGs编码了对多重耐药类、β-内酰胺类、氨基糖苷类、磷霉素类和多黏菌素类等抗生素的抗性。综上,本研究揭示了有机肥施用导致的土壤-蔬菜系统中人畜病原菌的分布情况,详细解析了病原菌携带的VFGs与ARGs类型,指明了食用叶类蔬菜存在的潜在健康风险,为加强畜禽粪便有机肥中重要人畜病原菌的风险防控提供了理论依据。
  • 加载中
  • 谢文凤, 吴彤, 石岳骄, 等. 国内外有机肥标准对比及风险评价[J]. 中国生态农业学报(中英文), 2020, 28(12): 1958-1968 Xie W F, Wu T, Shi Y J, et al. Chinese and international organic fertilizer standard comparison and risk assessment[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1958-1968(in Chinese)
    Black Z, Balta I, Black L, et al. The fate of foodborne pathogens in manure treated soil[J]. Frontiers in Microbiology, 2021, 12: 781357
    Brooks J P, Adeli A, McLaughlin M R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems[J]. Water Research, 2014, 57: 96-103
    李霞, 邓立刚, 王峰恩, 等. 堆肥消减畜禽粪便中病原微生物及抗生素残留的研究进展[J]. 山东农业科学, 2017, 49(7): 161-166

    Li X, Deng L G, Wang F E, et al. Progress in removal effect of composting on residues of pathogenic microorganisms and antibiotics in livestock and poultry manure[J]. Shandong Agricultural Sciences, 2017, 49(7): 161-166(in Chinese)

    Qian X, Gu J, Sun W, et al. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal of Hazardous Materials, 2018, 344: 716-722
    冯亚辉, 郭姣, 李伊光, 等. 集约化养猪粪便理化性质和堆肥工艺的研究[J]. 中国农业文摘-农业工程, 2023, 35(3): 53-58

    Feng Y H, Guo J, Li Y G, et al. Study on the physicochemical properties and composting process of intensive pig manure[J]. Chinese Agricultural Abstracts-Agricultural Engineering, 2023, 35(3), 53-58(in Chinese)

    Beuchat L R. Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases[J]. British Food Journal, 2006, 108(1): 38-53
    Guo Y J, Qiu T L, Gao M, et al. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species[J]. Journal of Hazardous Materials, 2021, 415: 125595
    van Overbeek L, Duhamel M, Aanstoot S, et al. Transmission of Escherichia coli from manure to root zones of field-grown lettuce and leek plants[J]. Microorganisms, 2021, 9(11): 2289
    Yang L, Liu W X, Zhu D, et al. Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest[J]. Soil Biology and Biochemistry, 2018, 122: 131-140
    Scanes C G. Animals and Human Disease: Zoonosis, Vectors, Food-Borne Diseases, and Allergies[M]//Animals and Human Society. Amsterdam: Elsevier, 2018: 331-354
    Liu B, Zheng D D, Jin Q, et al. VFDB 2019: A comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Research, 2019, 47(D1): D687-D692
    Engering A, Hogerwerf L, Slingenbergh J. Pathogen-host-environment interplay and disease emergence[J]. Emerging Microbes & Infections, 2013, 2(2): e5
    Zou Y N, Xiao Z J, Wang L F, et al. Prevalence of antibiotic resistance genes and virulence factors in the sediment of WWTP effluent-dominated rivers[J]. Science of the Total Environment, 2023, 897: 165441
    Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098): 1107-1111
    CDC. What exactly is antibiotic resistance?[EB/OL]. (2022-10-05)[2024-03-05]. https://www.cdc.gov/drugresistance/about.htm
    苑学霞, 梁京芸, 范丽霞, 等. 粪肥施用土壤抗生素抗性基因来源、转移及影响因素[J]. 土壤学报, 2020, 57(1): 36-47

    Yuan X X, Liang J Y, Fan L X, et al. Effects of manure application on source and transport of antibiotic resistant genes in soil and their affecting factors[J]. Acta Pedologica Sinica, 2020, 57(1): 36-47(in Chinese)

    Jechalke S, Schierstaedt J, Becker M, et al. Salmonella establishment in agricultural soil and colonization of crop plants depend on soil type and plant species[J]. Frontiers in Microbiology, 2019, 10: 967
    The Huttenhower Lab. KneadData[DB/OL].[2024-03-06]. https://huttenhower.sph.harvard.edu/kneaddata/
    Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477
    Chaumeil P A, Mussig A J, Hugenholtz P, et al. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database[J]. Bioinformatics, 2022, 38(23): 5315-5316
    Liu B, Zheng D D, Zhou S Y, et al. VFDB 2022: A general classification scheme for bacterial virulence factors[J]. Nucleic Acids Research, 2022, 50(D1): D912-D917
    Yin X L, Zheng X W, Li L G, et al. ARGs-OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline optimization[J]. Engineering, 2023, 27: 234-241
    Zhu L, Lian Y L, Lin D, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356
    Park S H, Chang P S, Ryu S, et al. Development of a novel selective and differential medium for the isolation of Listeria monocytogenes[J]. Applied and Environmental Microbiology, 2014, 80(3): 1020-1025
    余萌, 王似锦, 曹蕊, 等. 洋葱伯克霍尔德菌群(Bcc)的选择和分离培养基研究[J]. 中国药事, 2022, 36(7): 746-757

    Yu M, Wang S J, Cao R, et al. Study on selection and subculture agar of Burkholderia cepacia complex[J]. Chinese Pharmaceutical Affairs, 2022, 36(7): 746-757(in Chinese)

    Wu J, Guo S M, Li K J, et al. Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties[J]. Chemosphere, 2023, 336: 139272
    Lynch J P 3rd, Clark N M, Zhanel G G. Escalating antimicrobial resistance among Enterobacteriaceae: Focus on carbapenemases[J]. Expert Opinion on Pharmacotherapy, 2021, 22(11): 1455-1473
    Al-Kharousi Z S, Guizani N, Al-Sadi A M, et al. Antibiotic resistance of Enterobacteriaceae isolated from fresh fruits and vegetables and characterization of their AmpC β-lactamases[J]. Journal of Food Protection, 2019, 82(11): 1857-1863
    Xedzro C, Shimamoto T, Yu L S, et al. Emergence of colistin-resistant Enterobacter cloacae and Raoultella ornithinolytica carrying the phosphoethanolamine transferase gene, mcr-9, derived from vegetables in Japan[J]. Microbiology Spectrum, 2023, 11(6): e0106323
    Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: The most critical pathogens[J]. Pathogens, 2021, 10(10): 1310
    Ambreetha S, Marimuthu P, Mathee K, et al. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates[J]. Journal of Applied Microbiology, 2022, 132(4): 3226-3248
    Zhang Y J, Hu H W, Chen Q L, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environment International, 2019, 130: 104912
    Laborda P, Hernando-Amado S, Martínez J L, et al. Antibiotic Resistance in Pseudomonas[M]//Filloux A, Ramos J L. Pseudomonas aeruginosa: Biology, Pathogenesis and Control Strategies. Cham: Springer International Publishing, 2022: 117-143
    Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing[J]. Current Opinion in Microbiology, 2014, 18: 96-104
    Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world?[J]. Clinical Microbiology Reviews, 2013, 26(2): 185-230
    CDC. The biggest antibiotic-resistant threats in the U.S.[EB/OL]. (2022-07-15)[2024-03-12]. https://www.cdc.gov/drugresistance/biggest-threats.html
    Zhao Y, Su J Q, An X L, et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut[J]. Science of the Total Environment, 2018, 621: 1224-1232
    Lima T, Domingues S, Da Silva G J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events[J]. Veterinary Sciences, 2020, 7(3): 110
    金淮, 常志州, 朱述钧. 畜禽粪便中人畜共患病原菌传播的公众健康风险[J]. 江苏农业科学, 2005, 33(3): 103-105

    Jin H, Chang Z Z, Zhu S J. Public health risk of transmission of zoonotic pathogens in livestock manure[J]. Jiangsu Agricultural Sciences, 2005, 33(3): 103-105(in Chinese)

    Sheng H J, Wang F, Xiang L L, et al. Environmental behavior and control of antibiotic resistance genes in soil[J]. Acta Petrologica Sinica, 2022, 60(1): 39-49
    Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440
    Liu W B, Ling N, Guo J J, et al. Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years[J]. Journal of Hazardous Materials, 2021, 401: 123399
    Pérez-Valera E, Kyselková M, Ahmed E, et al. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications[J]. Scientific Reports, 2019, 9(1): 6760
    Xiao R H, Huang D L, Du L, et al. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855
    Iwu C D, Okoh A I. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4407
    程兆康, 杨金山, 吕敏, 等. 我国畜禽养殖业抗生素的使用特征及其环境与健康风险[J]. 农业资源与环境学报, 2022, 39(6): 1253-1262
    Binh C T, Heuer H, Kaupenjohann M, et al. Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure[J]. Research in Microbiology, 2009, 160(6): 427-433
    Chen Q L, An X L, Zhu Y G, et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere[J]. Environmental Science & Technology, 2017, 51(14): 8149-8157
    Guo Y J, Qiu T L, Gao M, et al. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species[J]. Journal of Hazardous Materials, 2021, 415: 125595
    Chen Q L, Cui H L, Su J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6): 530-541
    Zhang Z Y, Zhang Q, Wang T Z, et al. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022, 13(1): 1553
    Rossi F, Rizzotti L, Felis G E, et al. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives[J]. Food Microbiology, 2014, 42: 232-243
    Buchholz U, Bernard H, Werber D, et al. German outbreak of Escherichia coli O104: H4 associated with sprouts[J]. New England Journal of Medicine, 2011, 365(19): 1763-1770
  • 加载中
计量
  • 文章访问数:  893
  • HTML全文浏览数:  893
  • PDF下载数:  185
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-05-23
艾思木巴提·叶尔肯别克, 宋亚琼, 亓逢源, 王一飞, 乔敏, 朱永官. 有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析[J]. 生态毒理学报, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
引用本文: 艾思木巴提·叶尔肯别克, 宋亚琼, 亓逢源, 王一飞, 乔敏, 朱永官. 有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析[J]. 生态毒理学报, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
Aisimubati·Yeerkenbieke, Song Yaqiong, Qi Fengyuan, Wang Yifei, Qiao Min, Zhu Yongguan. Analysis of Potential Human and Zoonotic Pathogens and Their Resistance to Antibiotics in Organic Fertilizer Applied Soil-Vegetable System[J]. Asian journal of ecotoxicology, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001
Citation: Aisimubati·Yeerkenbieke, Song Yaqiong, Qi Fengyuan, Wang Yifei, Qiao Min, Zhu Yongguan. Analysis of Potential Human and Zoonotic Pathogens and Their Resistance to Antibiotics in Organic Fertilizer Applied Soil-Vegetable System[J]. Asian journal of ecotoxicology, 2024, 19(5): 50-63. doi: 10.7524/AJE.1673-5897.20240523001

有机肥施用土壤-蔬菜系统中潜在人畜病原菌及其耐药性分析

    通讯作者: 乔敏,E-mail:minqiao@rcees.ac.cn; 
    作者简介: 艾思木巴提·叶尔肯别克(1996-),女,硕士研究生,研究方向为土壤生物学,E-mail:18810373803@163.com
  • 1. 中国科学院生态环境研究中心 城市与区域生态国家重点实验室, 北京 100085;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院城市环境研究所 中国科学院城市环境与健康重点实验室, 厦门 361021
基金项目:

国家自然科学基金资助项目(21936006);国家重点研发计划课题(2020YFC1806902)

摘要: 畜禽粪便类有机肥中含有大量的人畜病原菌和抗生素抗性基因(antibiotic resistance genes, ARGs),施入农田后部分病原菌仍能继续存活并繁殖,且可能污染所种植的蔬菜,尤其是一些具有耐药性的人畜病原菌经食物链传递后将对人体健康造成巨大威胁。然而,当前大量的研究仅基于单纯的分离培养或高通量测序技术,对有机肥施用土壤-蔬菜系统中的人畜病原菌及其携带的毒力因子基因(virulence factor genes, VFGs)与ARGs认识有限。因此,本研究针对典型的长期施用有机肥的土壤-蔬菜系统,采集有机肥、施肥土及该土壤上种植的叶类蔬菜,如鸡毛菜、菜心、油麦菜和白菜等,结合传统分离培养及全基因组测序(whole genome sequencing, WGS)技术,利用生物信息学方法对分离菌株进行分类学及基因组注释,探究人畜病原菌的分布以及VFGs和ARGs的携带情况。结果表明在该施用有机肥的土壤-蔬菜系统中分离检测到42株人畜病原菌,其中37株属于肠杆菌科,5株属于假单孢菌科,主要的菌株包括大肠杆菌、克雷伯氏菌、假单胞菌和柠檬酸杆菌等,其中,大肠杆菌在土壤环境中显著富集,假单胞菌和柠檬酸杆菌主要分布在蔬菜根际及叶际。此外,全基因组测序提供了病原菌遗传信息,表明了人畜病原菌可能具有潜在的攻击性和代谢活性,携带有效应子、粘附性、生物膜、免疫调节性、侵袭性及毒素相关的VFGs。更重要的是,这些人畜病原菌均携带多种ARGs,这些ARGs编码了对多重耐药类、β-内酰胺类、氨基糖苷类、磷霉素类和多黏菌素类等抗生素的抗性。综上,本研究揭示了有机肥施用导致的土壤-蔬菜系统中人畜病原菌的分布情况,详细解析了病原菌携带的VFGs与ARGs类型,指明了食用叶类蔬菜存在的潜在健康风险,为加强畜禽粪便有机肥中重要人畜病原菌的风险防控提供了理论依据。

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回