总石油烃中当量烷烃和多环芳烃组分的毒性风险及联合毒性效应
Toxicological Risks and Combined Toxic Effects of Equivalent Alkanes and Polycyclic Aromatic Hydrocarbon Components in Total Petroleum Hydrocarbons
-
摘要: 石油对土壤环境的污染和生态毒性问题亟待解决。总石油烃(total petroleum hydrocarbon,TPH)中烷烃(alkanes,Alks)和多环芳烃(polycyclic aromatic hydrocarbons,PAHs)组分的含量和致毒特性存在明显差异,2种烃类污染物在TPH中的毒性贡献及其联合毒性效应尚不明确。以蚕豆作为生态受体,对1 000~50 000 mg·kg-1 TPH中的当量Alks和PAHs组分进行为期14 d的毒性实验,通过测定当量组分烃对蚕豆个体水平(萌芽、根长、根物质量、侧根数、茎叶物质量、叶绿素含量)和遗传水平(根尖有丝分裂、染色体异常、细胞微核)的影响,探究不同浓度TPH中的当量Alks和PAHs的毒性效应及毒性风险贡献情况;利用混合毒性指数法(mixture toxicity index,MTI)计算Alks和PAHs组分的联合毒性效应。结果表明,组分烃在土壤中的生态毒性受到其“化学致毒特性-剂量”综合作用的影响。以蚕豆萌芽率作为毒性指示因子时,低于5 000 mg·kg-1 TPH中的当量Alks组分毒性明显大于当量PAHs组分,而5 000~50 000 mg·kg-1 TPH中的当量PAHs组分的毒性明显大于当量Alks组分;以蚕豆根数作为毒性指示因子时,蚕豆生长初期(0~7 d),1 000~50 000 mg·kg-1 TPH中的当量PAHs表现出较强毒性,而蚕豆生长后期(7~14 d),二者毒性差异降低;遗传毒性测定结果显示,1 000~50 000 mg·kg-1 TPH中的当量PAHs组分毒性强于当量Alks组分。蚕豆个体水平上,当量Alks组分对蚕豆根数最敏锐,其毒性阈值为1 120.6 mg·kg-1,对应TPH浓度为11 672 mg·kg-1;当量PAHs组分对蚕豆萌芽率最敏锐,其毒性阈值为2.61 mg·kg-1,对应TPH浓度为15 353 mg·kg-1。蚕豆细胞和遗传水平上,以有丝分裂指数(MI)作为组分烃的毒性指示终点时,当量Alks和PAHs组分毒性阈值对应的TPH浓度均为45 000 mg·kg-1左右。MTI计算结果表明,1 000~10 000 mg·kg-1 TPH中的Alks和PAHs组分的联合毒性呈协同效应,20 000~30 000 mg·kg-1 TPH中的Alks和PAHs组分对不同毒性测试终点表现出不同的联合效应,50 000 mg·kg-1 TPH中的Alks和PAHs组分的联合毒性主要表现为拮抗效应。研究显示,对低于5 000 mg·kg-1的TPH污染,应重点关注其Alks组分的毒性,而高于5 000 mg·kg-1 TPH中的PAHs组分对植物生长初期及植物遗传毒性产生更重要的影响,这一研究结论可为石油污染场地的毒性风险评估提供理论依据。Abstract: The ecotoxicity of petroleum pollution in soil environment urgently needs to be addressed. The content and toxic characteristics of Alks and PAHs components in total petroleum hydrocarbon (TPH) exhibited significant differences, and their toxic contributions and combined toxic effects in TPH are not clear. In this study, using Vicia faba as the ecological receptor, the toxic effects of equivalent Alks and PAHs components in TPH ranging from 1 000 to 50 000 mg·kg-1 were investigated. The impacts of equivalent hydrocarbon fractions on individual growth (germination rate, root length, root biomass, lateral root quantity, stem and leaf mass, chlorophyll content) and genetic levels (root tip mitosis, chromosomal aberration, micronucleus) of Vicia faba were assessed to explore the toxic effects and risk contributions in different TPH concentrations. The mixture toxicity index (MTI) method was used to calculate the combined toxic effects of Alks and PAHs components. Results indicated that the ecological toxicity of hydrocarbon components in TPH is influenced by their combined “chemical characteristics-dosage” interaction. As the germination rate of Vicia faba was used as a toxicity indicator, the toxic contribution of equivalent Alks components in TPH below 5 000 mg·kg-1 was significantly higher than that of equivalent PAHs components; while the toxic contribution of PAHs components in TPH above 5 000~50 000 mg·kg-1 was significantly higher than that of equivalent Alks components. While using the root quantity as the toxicity indicator, during the early growth stage of Vicia faba (0~7 days), the equivalent PAHs in TPH ranging from 1 000 to 50 000 mg·kg-1 exhibited stronger toxicity, while there was no significant difference in toxicity between Alks and PAHs during the later growth periods (7~14 days). Genetic toxicity results showed that equivalent PAHs components in TPH ranging from 1 000 to 50 000 mg·kg-1 were more toxic than equivalent Alks components. At the individual level, the equivalent Alks component was the most sensitive to the root quantity of Vicia faba, and its toxicity threshold was 1 120.6 mg·kg-1, and the corresponding TPH concentration was 11 672 mg·kg-1. The equivalent PAHs component was the most sensitive to the germination rate of Vicia faba, and its toxicity threshold was 2.61 mg·kg-1, and the corresponding TPH concentration was 15 353 mg·kg-1. At the cellular and genetic levels, when mitotic index (MI) was used as the toxicity indication endpoint of the component hydrocarbons, the TPH concentrations corresponding to the toxicity thresholds of the equivalent Alks and PAHs were about 45 000 mg·kg-1.The MTI results indicated that the combined toxicity of Alks and PAHs components in TPH ranging from 1 000 to 10 000 mg·kg-1 exhibited a synergistic effect, while the toxicity of Alks and PAHs components in TPH ranging from 20 000 to 30 000 mg·kg-1 complicated combination effects on various toxicity endpoints. When the TPH content amounted to 50 000 mg·kg-1, the combined toxicity of Alks and PAHs components mainly exhibited an antagonistic effect. The results revealed that the toxicity of Alks components should be paid attention when TPH content was below 5 000 mg·kg-1. On the contrary the PAHs components have a more important influence on plant growth and genotoxicity when TPH content was over 5 000 mg·kg-1. This study provided theoretical basis for the toxicity risk assessment of petroleum-contaminated sites.
-
Key words:
- soil /
- total petroleum hydrocarbon /
- Alks components /
- PAHs components /
- toxic contributions /
- combined toxic effects
-
-
吴蔓莉,肖贺月,贺豪华,等.黄绵土中石油烃污染对蚯蚓的生态毒性风险研究[J].农业环境科学学报, 2022, 41(10):2131-2138. WU M L, XIAO H Y, HE H H, et al. Ecotoxicity risk of petroleum and hydrocarbon components to earthworms[J]. Journal of agro-environment science, 2022, 41(10):2131-2138.
JONKER M J, SVENDSEN C, BEDAUX J J M, et al. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis[J]. Environmental toxicology and chemistry, 2005, 24(10):2701-2713. GAINER A, HOGAN N, SICILIANO S D. Soil invertebrate avoidance behavior identifies petroleum hydrocarbon contaminated soils toxic to sensitive plant species[J]. Journal of hazardous materials, 2019, 361:338-347. SPRAGUE J B, RAMSAY B A. Lethal levels of mixed copper-zinc solutions for juvenile salmon[J]. Journal of the fisheries research board of Canada, 1965, 22(2):425-432. LIU X L, ZHENG X W, ZHANG L L, et al. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration[J]. Journal of hazardous materials, 2022, 437:129355. KÖNEMANN H. Fish toxicity tests with mixtures of more than two chemicals:a proposal for a quantitative approach and experimental results[J]. Toxicology, 1981, 19(3):229-238. QIAN W, CHEN C C, HUANG Y X, et al. Exposure concentration ratios and biological responses play a critical role in determining the joint toxicity of TiO2 nanoparticles and As (V) to the organism:the case study in marine algae Phaeodactylum tricornutum[J]. Science of the total environment, 2024, 909:168508. YANG F, YAN C Z. Influence of titanium dioxide nanoparticles on the toxicity of arsenate in Nannochloropsis maritima[J]. Chemosphere, 2018, 209:191-200. YANG X X, GONG J P, ZHANG X M, et al. Evaluation of the combined toxicity of multi-walled carbon nanotubes and cadmium on earthworms in soil using multi-level biomarkers[J]. Ecotoxicology and environmental safety, 2021, 221:112441. YOUSSEF M S, ELAMAWI R M. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba[J]. Environmental science and pollution research international, 2020, 27(16):18972-18984. ALAVI E, TAJADOD G, JAFARI MARANDI S, et al. Vicia faba seed:a bioindicator of phytotoxicity, genotoxicity, and cytotoxicity of light crude oil[J]. Environmental science and pollution research international, 2023, 30(8):21043-21051. 赵广宇,麦祎凡,侯跃洋,等."观察根尖分生组织细胞有丝分裂"实验改进及拓展探究[J].生物学教学, 2021, 46(9):56-58. MA J, SHEN J L, LIU Q X, et al. Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba[J]. Ecotoxicology, 2014, 23(4):665-673. GUPTA K, SRIVASTAVA A, SRIVASTAVA S, et al. Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L.[J]. Chemosphere, 2020, 241:125063. THABET A F, GALAL O A, EL-SAMAHY M F M, et al. Higher toxicity of nano-scale TiO2 and dose-dependent genotoxicity of nano-scale SiO2 on the cytology and seedling development of Vicia faba[J]. SN applied sciences, 2019, 1(9):956. 冯青英,陈盛,程麒,等.应用热乙醇法提取浮游植物中叶绿素a的探讨[J].安徽农业科学, 2012, 40(29):14398-14399 , 14413. FENG Q Y, CHEN S, CHENG Q, et al. Research on extraction of chlorophyll a from phytoplankton by heat-ethanol method[J]. Journal of Anhui agricultural sciences, 2012, 40(29):14398-14399, 14413.
石连旋,颜宏.植物生理学实验指导[M].北京:高等教育出版社, 2013:77-78. WANG C R, TIAN Y, WANG X R, et al. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings[J]. Chemosphere, 2010, 80(9):965-971. 沈伟航,朱能武,王华金,等.石油污染土壤生物修复过程中毒性的植物指示[J].农业环境科学学报, 2015, 34(1):22-28. SHEN W H, ZHU N W, WANG H J, et al. Plant bio-indicators of eco-toxicity of oil-contaminated soil during bioremediation[J]. Journal of agro-environment science, 2015, 34(1):22-28.
宋玉芳,周启星,许华夏,等.菲、芘、1, 2, 4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应[J].生态学报, 2002, 22(11):1945-1950. SONG Y F, ZHOU Q X, XU H X, et al. Eco-toxicological effects of phenanthrene, pyrene and 1,2,4-trichlorobenzene in soils on the inhibition of root elongation of higher plants[J]. Acta ecologica sinica, 2002, 22(11):1945-1950.
许殷瑞,吴蔓莉,王丽,等.陕北石油污染土壤微生物种群变化及影响因素[J].中国环境科学, 2021, 41(9):4349-4359. XU Y R, WU M L, WANG L, et al. The influences of petroleum pollution on the microbial population distribution in Northern Shaanxi Province of China[J]. China environmental science, 2021, 41(9):4349-4359.
KUMMEROVÁ M, ZEZULKAŠ, BABULA P, et al. Root response in Pisum sativum and Zea mays under fluoranthene stress:morphological and anatomical traits[J]. Chemosphere, 2013, 90(2):665-673. PENG B, DONG Q L, LI F Z, et al. A systematic review of polycyclic aromatic hydrocarbon derivatives:occurrences, levels, biotransformation, exposure biomarkers, and toxicity[J]. Environmental science&technology, 2023, 57(41):15314-15335. 李春荣,王文科,曹玉清,等.石油污染土壤对黄豆生长的生态毒性效应[J].西北农林科技大学学报(自然科学版), 2008, 36(1):116-120. LI C R, WANG W K, CAO Y Q, et al. Eco-toxicity of petroleum-contaminated soil on the growth of soybean[J]. Journal of Northwest A&F University (natural science edition), 2008, 36(1):116-120. LU X C, LIN Y, QIU X H, et al. Metabolomic changes after subacute exposure to polycyclic aromatic hydrocarbons:a natural experiment among healthy travelers from Los Angeles to Beijing[J]. Environmental science&technology, 2021, 55(8):5097-5105. CHIBWE L, GEIER M C, NAKAMURA J, et al. Aerobic bioremediation of PAH contaminated soil results in increased genotoxicity and developmental toxicity[J]. Environmental science&technology, 2015, 49(23):13889-13898. SUN L K, ZHANG M, XIE L X, et al. In silico prediction of boiling point, octanol-water partition coefficient, and retention time index of polycyclic aromatic hydrocarbons through machine learning[J]. Chemical biology&drug design, 2023, 101(1):52-68. 国家市场监督管理总局,国家标准化管理委员会.化学品水生环境危害分类指导第6部分:定量结构活性关系:GB/T 36700.6-2018[S].北京:中国标准出版社, 2018:2-3. YANG H Q, ZHU Z R, ZHOU J, et al. Accumulation, root-shoot translocation and phytotoxicity of substituted polycyclic aromatic hydrocarbons in wheat[J]. Environmental chemistry letters, 2023, 21(5):2509-2517. KIRSCH-VOLDERS M, PLAS G, ELHAJOUJI A, et al. The in vitro MN assay in 2011:origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance[J]. Archives of toxicology, 2011, 85(8):873-899. YUN Y, LIANG L Y, WEI Y, et al. 25[J]. Ecotoxicology and environmental safety, 2019, 180:756-761. ZHAO S W, QIN L Y, WANG L F, et al. Ecological risk thresholds for Zn in Chinese soils[J]. Science of the total environment, 2022, 833:155182. QIN L Y, WANG M, ZHAO S W, et al. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties[J]. Ecotoxicology and environmental safety, 2021, 228:112999. -

计量
- 文章访问数: 334
- HTML全文浏览数: 334
- PDF下载数: 64
- 施引文献: 0