生物炭的土壤环境效应及其机制研究

王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008
引用本文: 王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008
WANG Mengmeng, ZHOU Qixing. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008
Citation: WANG Mengmeng, ZHOU Qixing. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008

生物炭的土壤环境效应及其机制研究

  • 基金项目:

    国家自然科学基金重点项目(21037002)

    南开大学重大培育项目(65030051)支持.

Environmental effects and their mechanisms of biochar applied to soils

  • Fund Project:
  • 摘要: 近年来,随着土壤污染的逐渐加重以及食品安全问题的频出,生物炭作为重要的土壤改良剂以及对污染土壤修复表现出的巨大潜力引起人们的广泛关注.本文首先对国内外生物炭的土壤环境效应方面的研究以及成果进行分析总结.生物炭具有疏松多孔的性质以及巨大的表面积和阳离子交换量(CEC),可以改善土壤理化性质,能强烈吸附土壤中的污染物,降低其生物有效性和迁移转化能力;生物炭的碱性对于改良酸性土壤降低土壤中污染物的生物毒性具有很大的潜力;生物炭还可以为微生物提供生长繁殖的场所,有利于微生物对污染物的降解,但同时又可以保护被吸附的有机物免受微生物的降解,对不同的微生物影响不同;生物炭可以对蚯蚓等土壤动物的生存产生影响.在此基础上,依据生物炭的基本理化性质,对其土壤环境效应机制进行了分析.最后,从当前工作中存在的不足对今后的研究重点和方向进行了展望.
  • 加载中
  • [1] Lehmann J, Joseph S.Biochar for environmental management: science and technology[M]. London:Earthscan,2009
    [2] Skjemstad J O,Reicosky D C,Wilts A R, et al. Charcoal carbon in U.S. agricultural soils[J]. Soil Science Society of America Journal, 2002,66(4):1249-1255
    [3] Bridgewater A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003,91(2/3):87-102
    [4] Grossman J M, O'Neill B E, Tsai S M, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microbial Ecology,2010, 60:192-205
    [5] Laird D,Fleming P,Wang B Q, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil[J]. Geoderma, 2010, 158 (3/4): 436-442
    [6] 王典, 张祥, 姜存仓,等. 生物质炭改良土壤及对作物效应的研究进展[J]. 中国生态农业学报, 2012, 20(8): 963-967
    [7] 张晗芝,黄云,刘钢,等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J].生态环境学报,2010,19(11): 2713-2717
    [8] 陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报,2011, 22(11): 2930-2934
    [9] Zhang A F, Cui L Q, Pan G X, et al. Effect of biocharamendment on yield and methane and nitrous oxide emissionsfrom a rice paddy from Tai Lake plain,China[J].Agriculture, cosystems and Environment, 2010, 139(4):469-475
    [10] Rondon M, Lehmann J, Ramirez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions [J]. Biology and Fertility of Soils, 2007, 43(6):688-708
    [11] Strelko V, Malik D J, Streat M. Characterisation of the surface of oxidised carbon adsorbents[J]. Carbon, 2002, 40(1): 95-104
    [12] 吕殿青,邵明安. 土壤干湿收缩特征研究进展[J].土壤通报,2003,34(3):225-228
    [13] Liang B, Lehmann J, Sohi S P, et al.Black carbon affects the cucling of non-black carbon in soil[J]. Organic Geochemistry, 2010. 41(2): 206-213
    [14] 张文玲,李桂花,高卫东. 生物质炭对土壤性状和作物产量的影响. 中国农学通报, 2009,25(17):153-157
    [15] Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: The role of aromatic systems[J]. Environmental Science and Technology, 2009,43(10):3421-3429
    [16] Yang Y N, Sheng G Y. Enhanced pesticide sorption by soils containing particlate matter from crop residue burns[J]. Environmental Science and Technology, 2003,37(16):3635-3639
    [17] 李力, 刘娅, 陆宇超,等. 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 2011. 30(8): 1411-1421
    [18] 安增莉,侯艳伟,蔡超,等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J].环境化学, 2011,30(11): 1851-1857
    [19] Kasozi G N, Zimmerman A R,Nkedi-Kizza P,et al. Catechol and humic acid sorption onto a range of laboratory produced black carbons(Biochars)[J]. Environmental Science and Technology, 2010,44(16):6189-6195
    [20] Nguyen T H,Cho H H,Poster D L,et al.Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J].Environ Sci Technol,2007,41:1212-1217
    [21] Yu X Y, Ying G G, Kookana R S. Reduced plant uptake of pesticides with biochar additions to soil[J]. Chemosphere, 2009,76(6):665-671
    [22] Qiu Y P, Xiao Y X,Cheng H Y, et al. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter[J]. Environmental Science and Technology, 2009,43 (13):4973-4978
    [23] Zhu D Q,Kwon S,Pignatello J J.Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J].Environ Sci Technol,2005,39:3990-3998
    [24] Chen B L,Chen Z M.Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J].Chemosphere,2009,76:127-133
    [25] 王宁,侯艳伟,彭静静,等, 生物炭吸附有机污染物的研究进展[J]. 环境化学, 2012, 31(3): 287-294
    [26] Bornemann L C,Kookana R S,Welp G.Differential sorption behavior of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood[J]. Chemosphere, 2007, 67: 1033-1042
    [27] Ding Y, Liu Y X, Wu W X, et al. Evaluation of biochar effects on nitrogen retention and leaching[J].Water, Air, and Soil Pollution, 2010,213(1/4): 47-55
    [28] 杨磊,陈清松,赖寿莲,等.竹炭对甲醛的吸附性能研究[J]. 林产化学与工业, 2005, 25(1): 77-80
    [29] Yang Y N,Chun Y,Sheng G Y,et al.pH-dependence of pesticide adsorption by wheat-residue-derived black carbon[J]. Langmuir, 2004, 20: 6736-6741
    [30] 史明, 胡林潮,黄兆琴,等.生物质炭的加入对土壤吸附菲能力以及玉米幼苗对菲吸收量的影响[J].农业环境科学学报, 2011. 30(5): 912-916
    [31] Oleszczuk P, Hale S E, Lehmann J, et al. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge[J]. Bioresource Technology, 2012,111:84-91
    [32] 花莉, 陈英旭, 吴伟祥, 等. 生物质炭输入对污泥施用土壤-植物系统中多环芳烃迁移的影响[J].环境科学, 2009,30(8): 2419-2424
    [33] Jones D L, Edwards-Jones G, Murphy D V. Biochar mediated alterations in berbicide breakdown and leaching in soil[J]. Soil Biology and Biochemistry, 2011,43(4): 804-813
    [34] 余向阳,王冬兰,母昌立.生物质炭对敌草隆在土壤中的慢吸附及其对解吸行为的影响[J].江苏农业学报, 2011,27(5): 1011-1015
    [35] Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009,174: 105-112
    [36] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soilproperties on heavy metal sequestration by biochar amendments: 1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011,82: 1431-1437
    [37] Fellet G, Marchiol L,Peressotti A, et al. Application of biochar on mine tailings: Effects and perspectives for land reclamation[J]. Chemosphere, 2011, 83:1262-1297
    [38] Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010,101(14):5222-5228
    [39] Glaser B, Lehman J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A view[J]. Biology and Fertility of Soils, 2002, 35: 219-223
    [40] 朱庆祥.生物炭对Pb、Cd污染土壤的修复试验研究.重庆: 重庆大学硕士论文, 2011
    [41] Cao X D,Ma L N,Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009,43 (9):3285-3291
    [42] 佟雪娇,李九玉,袁金华,等.稻草炭对溶液的Cu(Ⅱ)的吸附作用[J].环境化学, 2012,31(1):64-68
    [43] 林爱军,张旭红,苏玉红,等.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学, 2007,28(2): 232-235
    [44] Lehmann J, Jose Pereira da silva Jr., Christoph Steiner, et al. Nutrient availability and leaching ferralsol of the Central Amazon basin:fertilizer,manure and charcoal amendments[J]. Plant and Soil, 2003,249: 343-357
    [45] 郝晓伟, 黄益宗, 崔岩山,等. 赤泥和骨炭对污染土壤 As化学形态及其生物可给性的影响[J]. 环境化学, 2010,29(3): 383-387
    [46] Masscheleyn P H, Delaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil[J]. Environmental Science and Technology, 1991, 25: 1414-1419
    [47] Mohan D, Pittman Jr C U. Arsenic removal from water/wastewater using adsorbants e a critical review[J]. Journal of Hazardous Materials, 2007, 142:1-53
    [48] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic,cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159: 474-480
    [49] Namgay T, Singh B, Singh B P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.)[J]. Australian Journal of Soil Research, 2010,48: 638-647
    [50] Jeffery S, Verheijen F G A, van der Velde M,et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture,Ecosystems and Environmental, 2011,144:175-187
    [51] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159:3269-3282
    [52] Oguntunde P G, Fosu M, Ajayi A E, et al. Effects of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology and Fertility of Soils, 2004,39(4): 295-299
    [53] Van Z L, Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant Soil, 2010,327: 235-246
    [54] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010,333:117-128
    [55] Lehmann C J, Rondon M. Biochar soil management on highly-weathered soils in the tropics//Biological approaches to sustainable soil systems[M]. N.T. Uphoff Boca Raton: CRC Press, 2006:517-530
    [56] Rondon M, Ramrez J, Lehmann J. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in A griculture and Forestry. Maryland, 2005
    [57] Taghizadeh-Toosi A, Clough T J, Condron L M, et al. Biochar incorporation into pasture soil suppresses in situnitrous oxide emissions from ruminant urine patches[J]. Journal of Environmental Quality, 2011,40: 468-476
    [58] Asaih H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD, and grain yield[J]. Field Crop Research, 2009,111: 81-84
    [59] Brussaard L, de Ruiter P C, Brown G G. Soil biodiversity for agriculturalsustainability[J]. Agriculture, Ecosystems and Environment, 2007, 121:233-244
    [60] Lehman J,Matthias C, Rillig J T, et al., Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry, 2011,43: 1812-1836
    [61] Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007,88:1386-1394
    [62] Malik K A. Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying[J]. Journal of Microbiological Methods, 1990, 12: 117-124
    [63] Noguera D, Rondón,Laossi K R, et al. Contrasted effect of biochar and earthworms on rice growth and resourve allocation in different soils[J]. Soil Biology and Biochemistry, 2010,42(7): 1017-1027
    [64] Thies J E, Rillig M. Characteristics of biochar: biological properties//Lehmann J, Joseph S. Biochar for environmental management: Science and technology[M]. London, Earthscan,2009:85-105
    [65] Pietikinen J, Kiikkil O, Fritze H. Charcoal as a habitat for microbes and its effects on the microbial community of the underlying humus[J]. Oikos, 2000,89:231-242
    [66] Kumar S, Jain M C, Chhonkar P K. A note on the stimulation of biogas production from cattle dung by addition of charcoal[J]. Biological Wastes, 1987,20:1209-1215
    [67] Kim J S, Sparovek S, Longo R M,et al. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon[J]. Soil Biology and Biochemistry, 2007, 39: 648-690
    [68] Taketani R G, Tsai S M. The influence of different land uses on the structure of archaeal communities in Amazonian Anthrosols based on 16S rRNA and amoA genes[J]. Microbial Ecology,2010,59:734-743
    [69] Jin H. Characterization of microbial life colonizing biochar and biochar-amended soils. Ithaca, NY: Cornell University, PhD Dissertation, 2010
    [70] Craig R Anderson, Leo M Condron, Tim J Clough, et al. Biochar induced soil microbial community chang: Implications for biogeochemical cycling of carbon,nitrogen and phosphorus[J]. Pedobiologia, 2011,54: 309-320
    [71] Lehmann J. A handful of carbon[J]. Nature, 2007,447:143-144
    [72] Clough T J, Bertram J E, Ray J L, et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil[J]. Soil Science Society of America Journal, 2010,74:852-860
    [73] Gryndler M, Larsen J, Hrselovac H, et al. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long term field experiment[J]. Mycorrhiza, 2006, 16: 159-166
    [74] Killham K. A physiological determination of the impact of environmental stress on the activity of microbial biomass[J]. Environmental Pollution, 1985,Series A(38): 283-294
    [75] Chan K Y, Xu Z. Biochar for Environmental Management Science and Technology : Biochar : nutrient properties and their enhancement[M]. London:Earthscan, 2009:67-84
    [76] Chan K Y, Van Zwieten L, Meszaros I, et al. Using poultry litter biochars as soil amendments[J]. Australian Journal of Soil Research, 2008, 46: 437-444
    [77] Boyer S, Wratten S D. The potential of earthworms to restore ecosystem services after opencast miningA review[J]. Basic and Applied Ecology, 2010,11:196-203
    [78] Topoliantz S, Ponge J F. Charcoal consumption and casting activity by Pontoscolex corethrurus (Glossoscolecidae)[J]. Applied Soil Ecology, 2005,28:217-224
    [79] Topoliantz S, Ponge J F, et al. Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the presence of charcoal[J]. Applied Soil Ecology, 2003,23:267-271
    [80] Lavelle P. Earthworm activities and the soil system[J]. Biology and Fertility of Soils, 1988, 6: 237-259
    [81] DeLuca T H, MacKenzie M D, Gundale M J.Biochar for Environmental management science and technology: Biochar effects on soil nutrient transformations[M]. London:Earthscan, 2009 :251-270
    [82] 宋洋,王芳,杨兴伦,等.生物质炭对土壤中氯苯类物质生物有效性的影响及评价方法[J]. 环境科学, 2012.,33(1): 169-174
    [83] Fagervold S K, Chai Y, Davis J W, et al. Bioaccumulation of polychlorinated dibenzo-p-dioxins/dibenzofurans in E. fetida from floodplain soils and the effect of activated carbon amendment[J]. Environmental Science and Technology, 2010,44: 5546-5552
    [84] Gomez-Eyles J L, Sizmur T, Collins C D, et al. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements[J]. Environmental Pollution,159: 616-622
    [85] Liesch A, Weyers S, Gaskin J, et al. Impact of two different biochars on earthworm growth and survival[J]. Annals of Environmental Science, 4: 1-9
    [86] Matlack G R. Factors determining the distribution of soil nematodes in a commercial forest landscape[J]. Forest Ecology and Management, 2001,146:129-143
    [87] Phillips D H, Foss J E, Buckner E, Response of surface horizons in an oak forest to prescribed burning[J]. Soil Science Society of America Journal 2000. 64: 754-760
    [88] Moore J C, Walter D E, Hunt H W. Arthropod regulation of micro- and mesobiota in below-ground detrital food webs[J]. Annual Reviews of Entomology, 1988,33: 419-439
    [89] McLeod P B, van den Heuvel-Greve M J, Luoma S N, et al. Biological uptake of polychlorinated biphenyls by Macoma balthica from sedimentamended with activated carbon[J]. Environmental Toxicology and Chemistry, 2007,26:980-987
    [90] Millward R N, Bridges T S, Ghosh U, et al. Addition of activated carbon to sediments to reduce PCB bioaccumulation by a poly-chaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus)[J]. Environmental Science and Technology,2005,39:2880-2887
    [91] 刘玉学, 刘微, 吴伟祥.土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009,20(4): 977-982
    [92] Accardi D A,Gschwend P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments[J]. Environmental Science & Technology, 2002,36:21-29
    [93] Liang B, Lehmann J, Solomon D. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America, 2006,70(5):1719-1730
    [94] 袁金华,徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011,20(4): 779-785
    [95] Nguyen B, Lehmann J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40:846-853
    [96] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37: 1477-1488
    [97] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42: 5137-5143
    [98] Sharma R K, Wooten J B, Baliga V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004,83: 1469-1482
    [99] 冯小江, 伊松林, 张齐生, 热解条件对农作物秸秆炭性能的影响[J].北京林业大学学报, 200,31(1): 182-184
    [100] 陈宝梁,周丹丹,朱利中,等.生物碳质吸附剂对水中有机污染物的吸附作用及机理[J].中国科学B辑:化学,2008,38(6):530-537
    [101] Chen B L, Xing B S. Sorption and conformational characteristics of reconstituted plant cuticular waxes on montmorillonite[J]. Environmental Science and Technology, 2005,39(21): 8315-8323
    [102] Chen B L, Johnson E J, Chefetz B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility[J]. Environmental Science and Technology, 2005, 39: 6138-6146
    [103] Okimori Y, Ogawa M, Takahashi F. Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in Sumatra, Indonesia[J]. Mitigation and Adaptation Strategies for Global Change, 2003, 8(3): 261-280
    [104] Demirbas A. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248
    [105] Katyal S, Thambimuthu K, Valix M. Carbonisation of bagasse in a fixed bed reactor: Influence of process variables on char yield and characteristics[J]. Renewable Energy, 2003,28(5): 713-725
    [106] Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant-derived black carbon (biochar)[J]. Environmental Science and Technology, 2010, 44: 1247-1253
  • 加载中
计量
  • 文章访问数:  3394
  • HTML全文浏览数:  3314
  • PDF下载数:  2740
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-20

生物炭的土壤环境效应及其机制研究

  • 1. 南开大学环境科学与工程学院, 教育部环境污染过程与基准重点实验室, 天津, 300071
基金项目:

国家自然科学基金重点项目(21037002)

南开大学重大培育项目(65030051)支持.

摘要: 近年来,随着土壤污染的逐渐加重以及食品安全问题的频出,生物炭作为重要的土壤改良剂以及对污染土壤修复表现出的巨大潜力引起人们的广泛关注.本文首先对国内外生物炭的土壤环境效应方面的研究以及成果进行分析总结.生物炭具有疏松多孔的性质以及巨大的表面积和阳离子交换量(CEC),可以改善土壤理化性质,能强烈吸附土壤中的污染物,降低其生物有效性和迁移转化能力;生物炭的碱性对于改良酸性土壤降低土壤中污染物的生物毒性具有很大的潜力;生物炭还可以为微生物提供生长繁殖的场所,有利于微生物对污染物的降解,但同时又可以保护被吸附的有机物免受微生物的降解,对不同的微生物影响不同;生物炭可以对蚯蚓等土壤动物的生存产生影响.在此基础上,依据生物炭的基本理化性质,对其土壤环境效应机制进行了分析.最后,从当前工作中存在的不足对今后的研究重点和方向进行了展望.

English Abstract

参考文献 (106)

目录

/

返回文章
返回