生物质炭降解过程中易氧化部分的定量方法

杨旻, 王英惠, 胡林潮, 史明, 刘玮晶, 高晓荔, 唐伟, 郭悦, 代静玉. 生物质炭降解过程中易氧化部分的定量方法[J]. 环境化学, 2013, 32(5): 781-788. doi: 10.7524/j.issn.0254-6108.2013.05.009
引用本文: 杨旻, 王英惠, 胡林潮, 史明, 刘玮晶, 高晓荔, 唐伟, 郭悦, 代静玉. 生物质炭降解过程中易氧化部分的定量方法[J]. 环境化学, 2013, 32(5): 781-788. doi: 10.7524/j.issn.0254-6108.2013.05.009
YANG Min, WANG Yinghui, HU Linchao, SHI Ming, LIU Weijing, GAO Xiaoli, TANG Wei, GUO Yue, DAI Jingyu. Quantitative method study on easily oxidized part of biochar during its degradation[J]. Environmental Chemistry, 2013, 32(5): 781-788. doi: 10.7524/j.issn.0254-6108.2013.05.009
Citation: YANG Min, WANG Yinghui, HU Linchao, SHI Ming, LIU Weijing, GAO Xiaoli, TANG Wei, GUO Yue, DAI Jingyu. Quantitative method study on easily oxidized part of biochar during its degradation[J]. Environmental Chemistry, 2013, 32(5): 781-788. doi: 10.7524/j.issn.0254-6108.2013.05.009

生物质炭降解过程中易氧化部分的定量方法

  • 基金项目:

    国家自然基金项目(41271246)资助.

Quantitative method study on easily oxidized part of biochar during its degradation

  • Fund Project:
  • 摘要: 研究将土壤有机质测定方法(KMnO4和K2Cr2O7氧化法)运用到生物质炭上,探讨了生物质炭(Biochar,BC)降解过程中易氧化部分的定量方法.研究结果显示,生物质炭抗氧化性存在不均一性,既可能是生物质炭制备过程产生的热解小分子物质,也可能是生物质炭降解产生的易氧化部分;进一步选定重铬酸钾作为氧化剂,确定氧化条件,氧化降解前后生物质炭,得出生物质炭降解确实产生易氧化部分.本文研究建立的生物质炭易氧化部分定量法可以作为生物质炭的降解程度的定量指标,为土壤中有机碳循环提供重要研究方法.值得强调的是该定量法应用到不同种类的生物质炭上须对氧化条件做出相应讨论.
  • 加载中
  • [1] Cheng C H, Lehmann J, Thies J E, et al. Stability of black carbon in soils across a climatic gradient[J]. Journal of geophysical research, 2008,113: G02027
    [2] Liang B Q, Lehmann J, Solomon D, et al. Stability of biomass-derived black carbon in soils[J]. Geochimica et Cosmochimica Acta, 2008,72: 6069-6078
    [3] Mašek O, Brownsort P, Cross A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103:151-155
    [4] Masiello C A, Druffel E R M. Organic and black carbon C-13 and C-14 through the Santa Monica Basin sediment oxic-anoxic transition[J]. Geophysical Research Letters, 2003, 30(4): 1185
    [5] Pessenda L C R, Gouvia S E M, Aravena R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with C-14 ages of fossil charcoal[J]. Radiocarbon, 2001, 43: 595-601
    [6] Masiello C A, Druffel E R M. Black carbon in deep-sea sediments[J]. Science, 1998, 280: 1911-1913
    [7] Hamer U, Marschner B, Brodowski S, et al. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry, 2004, 35: 823-830
    [8] Lehmann J. A handful of carbon[J]. Nature, 2007, 443: 143-144
    [9] Lemhann J. Bio-energy in the black[J]. Frontiers in Ecology and the Enuironment, 2007, 5: 381-387
    [10] Masiello C. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92: 201-213
    [11] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37: 1477-1488
    [12] Cheng C H, Lehmann J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009, 75: 1021-1027
    [13] Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72: 1598-1610
    [14] Nguyen B T, Lehmann J, Hockaday W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Enviroment Science Technology, 2010, 44: 3324-3331
    [15] Mohamad Anas Nahil T W. Characterisation of activated carbons with high surface area and variable porosity produced from agricultural cotton Waste by chemical activation and co-activation[J]. Waste Biomass Valor, 2012, 10.1007/s12649-012-9109-7
    [16] Lamparter A, Bachmann J, Goebel M O, et al. Carbon mineralization in soil: Impact of wetting-drying, aggregation and water repellency[J]. Geoderma, 2009, 150: 324-333
    [17] Nguyen B T, Lehmann J. Blank carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40: 846-853
    [18] Andrew R, Zimmerman. Abiotic and microbial oxidation of laboratory-produced black carbon(Biochar)[J]. Enviroment Science Technology, 2010, 44: 1295-1301
    [19] Calvelo Pereira R, Kaal J, Camps Arbestain M, et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon[J]. Organic Geochemistry, 2011, 42:1331-1342
    [20] Kamegawa K, Nishikubo K, Kodama M, et al. Oxidative degradation of carbon blacks with nitric acid Ⅱ. Formation of water-soluble polynuclear aromatic compounds[J]. Carbon, 2002, 40: 1447-1455
    [21] Kamegawa K, Nishikubo K, Yoshida H. Oxidative degradation of carbon blacks with nitric acid(Ⅰ)-changes in pore and crystallographic strutures[J]. Carbon, 1998, 4: 433-441
    [22] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America, 2006, 70(5): 1719-1730
    [23] Logninow W, Wisniewski W, Strony W M, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20: 47-52
    [24] 张齐生, 周建斌, 屈永标. 农林生物质的高效、无公害、资源化利用[J]. 林产工业, 2009, 36(1): 3-8
    [25] Yoo G, Spomer A L, Wander M M. Regulation of carbon mineralization rates by soil structure and water in an agricultural field and a prairie-like soil[J]. Geoderma, 2006, 135: 16-25
    [26] Chan K Y, Van Z L, Meazaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45: 629-634
    [27] Blair G J, Leffoy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australia Journal of Agricultural Research, 1995,46: 1459-1466
    [28] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102: 3488-3497
  • 加载中
计量
  • 文章访问数:  1097
  • HTML全文浏览数:  1038
  • PDF下载数:  450
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-18

生物质炭降解过程中易氧化部分的定量方法

  • 1.  南京农业大学, 南京, 210095;
  • 2.  常州环境科学研究院, 常州, 213022
基金项目:

国家自然基金项目(41271246)资助.

摘要: 研究将土壤有机质测定方法(KMnO4和K2Cr2O7氧化法)运用到生物质炭上,探讨了生物质炭(Biochar,BC)降解过程中易氧化部分的定量方法.研究结果显示,生物质炭抗氧化性存在不均一性,既可能是生物质炭制备过程产生的热解小分子物质,也可能是生物质炭降解产生的易氧化部分;进一步选定重铬酸钾作为氧化剂,确定氧化条件,氧化降解前后生物质炭,得出生物质炭降解确实产生易氧化部分.本文研究建立的生物质炭易氧化部分定量法可以作为生物质炭的降解程度的定量指标,为土壤中有机碳循环提供重要研究方法.值得强调的是该定量法应用到不同种类的生物质炭上须对氧化条件做出相应讨论.

English Abstract

参考文献 (28)

目录

/

返回文章
返回