商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性

程华, 韦正乐, 杨超, 黄碧纯. 商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性[J]. 环境化学, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
引用本文: 程华, 韦正乐, 杨超, 黄碧纯. 商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性[J]. 环境化学, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
CHENG Hua, WEI Zhengle, YANG Chao, HUANG Bichun. Improvement on the for the poisoning resistance of commercial de-NOx SCR catalyst[J]. Environmental Chemistry, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
Citation: CHENG Hua, WEI Zhengle, YANG Chao, HUANG Bichun. Improvement on the for the poisoning resistance of commercial de-NOx SCR catalyst[J]. Environmental Chemistry, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013

商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性

Improvement on the for the poisoning resistance of commercial de-NOx SCR catalyst

  • 摘要: 通过浸渍法向商业V2O5(WO3)/TiO2催化剂中掺杂了不同浓度的Ni或Zr元素,并对催化剂进行了K中毒前后的活性测试以及EDS、BET、XRD、FT-IR、H2-TPR、XPS表征测试.结果表明,掺杂Ni或Zr后催化剂抗K中毒能力显著增强,EDS和XRD结果显示Ni和Zr能进入催化剂体系,催化剂载体TiO2保持原有锐钛矿晶型,其他元素则以高度分散或无定形状态存在.NH3吸附FT-IR实验证明掺杂Ni后催化剂表面形成了新的Lewis酸位,而Zr的加入使原有Bronsted酸位得以增强,这是两种元素的掺杂均能提高催化剂抗K中毒能力的原因.H2-TPR和XPS实验证实掺杂后催化剂氧化还原能力得到了增强,弥补了比表面积减少的不利因素.
  • 加载中
  • [1] Prins W L, Nuninga Z L. Design and experience with catalytic reactor for SCR-DE-NOx[J]. Catal Today, 1993, 16: 187-205
    [2] Benson S A, Laumb J D, Crocker C R, et al.SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Proeessing Teehnology, 2005, 86(5):577-613
    [3] Zheng Y, Jensen A D, Johnsson J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst generation[J]. Ind Eng Chem Res, 2004, 43: 941-947
    [4] Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis A: Chemical, 1999, 139(2/3): 189-198
    [5] Zheng Y, Jensen A D, Johnsson J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 253-264
    [6] Nicosia D, Czekaj I, Kröcher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution, partⅡ. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B:Environmental, 2008, 77(3/4):228-236
    [7] 王静, 沈伯雄, 刘亭, 等. 钒钛基SCR催化剂中毒及再生研究进展[J]. 环境科学与技术, 2010, (9): 97-101
    [8] Johannes Due-Hansen J, Kustov A L, Rasmussen S B, et al.Tungstated zirconia as promising carrier for De-NOx catalysts with improved resistance towards alkali poisoning[J].Applied Catalysis B: Environmental, 2006, 66(3/4): 161-167
    [9] 崔力文, 宋浩, 吴卫红, 等.电站失活 SCR 催化剂再生试验研究[J].能源工程, 2012, (3): 43-46, 54
    [10] Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnO<em>x/Al2O3 I.adsorption and desorption of the single reaction components[J]. Journal of Catalysis, 1997, 171:208-218
    [11] Wu Z B, Jiang B Q, Liu Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ SciTechnol, 2007, 41: 5812-5817
    [12] Malpartidaa I, Mariea O, Bazin P. The NO/NOx ratio effect on the NH3-SCR efficiency of a commercial automotive Fe-zeolite catalyst studied by operando IR-MS[J]. Applied Catalysis B: Environmental, 2012, 113-114: 52-60
    [13] Sanchez-Escribano V, Montanari T, Busca G. Low temperature selective catalytic reduction of NOx by ammonia over H-ZSM-5: An IR study[J]. Applied Catalysis B: Environmental, 2005, 58: 19-23
    [14] Zawadzki J, Wisniewski M. Carbon films as a model material in catalytic NH3/O2 reaction—in situ FTIR study[J]. Fuel Processing Technology 2002, 77-78: 389-394
    [15] Khodayari R. Regeneration of commercial SCR catalysts by washing and sulphation: Effect of sulphate groups on the activity[J].Applied Catalysis B, 2001, 33 (1): 277-291
    [16] Liu J, Zhao Z, Wang J Q, et al. The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion[J]. Applied Catalysis B, 2008, 84, 185. doi: 10.1016/j.apcatb.2008.03.017
    [17] Boudali L K, Ghorbel A, Grange P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction[J].Comptes Rendus Chimmie, 2009, 6-7(12):779-786
    [18] 沈伯雄, 熊丽仙, 刘亭, 等.纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J].燃料化学学报, 2010, 38(1):85-89
    [19] Zheng Y J, Jensen A D. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab and Pilot scale experiments[J]. Applied Catalysis B, 2008, 83 (3/4): 186-194
  • 加载中
计量
  • 文章访问数:  850
  • HTML全文浏览数:  850
  • PDF下载数:  559
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-02
程华, 韦正乐, 杨超, 黄碧纯. 商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性[J]. 环境化学, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
引用本文: 程华, 韦正乐, 杨超, 黄碧纯. 商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性[J]. 环境化学, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
CHENG Hua, WEI Zhengle, YANG Chao, HUANG Bichun. Improvement on the for the poisoning resistance of commercial de-NOx SCR catalyst[J]. Environmental Chemistry, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013
Citation: CHENG Hua, WEI Zhengle, YANG Chao, HUANG Bichun. Improvement on the for the poisoning resistance of commercial de-NOx SCR catalyst[J]. Environmental Chemistry, 2014, 33(6): 1010-1017. doi: 10.7524/j.issn.0254-6108.2014.06.013

商业钒钛基选择性催化还原法脱硝催化剂的抗毒改性

  • 1.  华南理工大学环境与能源学院, 广州, 510006;
  • 2.  北京百灵天地环保科技有限公司, 广州, 510627;
  • 3.  广东电网公司电力科学研究院, 广州, 510080;
  • 4.  广东省大气环境与污染控制重点实验室, 广州, 510006

摘要: 通过浸渍法向商业V2O5(WO3)/TiO2催化剂中掺杂了不同浓度的Ni或Zr元素,并对催化剂进行了K中毒前后的活性测试以及EDS、BET、XRD、FT-IR、H2-TPR、XPS表征测试.结果表明,掺杂Ni或Zr后催化剂抗K中毒能力显著增强,EDS和XRD结果显示Ni和Zr能进入催化剂体系,催化剂载体TiO2保持原有锐钛矿晶型,其他元素则以高度分散或无定形状态存在.NH3吸附FT-IR实验证明掺杂Ni后催化剂表面形成了新的Lewis酸位,而Zr的加入使原有Bronsted酸位得以增强,这是两种元素的掺杂均能提高催化剂抗K中毒能力的原因.H2-TPR和XPS实验证实掺杂后催化剂氧化还原能力得到了增强,弥补了比表面积减少的不利因素.

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回