河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响

刘世诚, 李玲玲, 任源, 黄志立, 张丽君. 河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响[J]. 环境化学, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
引用本文: 刘世诚, 李玲玲, 任源, 黄志立, 张丽君. 河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响[J]. 环境化学, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
LIU Shicheng, LI Lingling, REN Yuan, HUANG Zhili, ZHANG Lijun. Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation[J]. Environmental Chemistry, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
Citation: LIU Shicheng, LI Lingling, REN Yuan, HUANG Zhili, ZHANG Lijun. Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation[J]. Environmental Chemistry, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021

河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响

  • 基金项目:

    国家自然科学基金51178190;广州市科信局应用基础研究项目2013J4100107;教育部留学回国人员科研启动基金资助.

Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation

  • Fund Project:
  • 摘要: 本文采用血清瓶实验研究了贵屿镇练江底泥TCBPA的厌氧降解特性以及该过程中硫酸盐还原菌的变化情况.结果表明,在不同还原条件下,TCBPA 降解效率顺序为:产甲烷环境>硫酸盐还原环境>接种控制,对应降解速率常数分别为:0.0844 d-1、0.0694 d-1、0.0561 d-1,半衰期分别为:8.2 d、10.0 d、12.4 d.与接种控制组相比,加入电子供体可加速TCBPA降解,降解速率常数可达0.0722 d-1,半衰期为9.6 d.加入邻苯二甲酸丁酯后,TCBPA降解受到抑制,降解速率常数为0.0491 d-1,半衰期为14.1 d.使用Comparative Ct法进行荧光定量PCR实验,结果表明硫酸盐还原菌在TCBPA降解过程中起到了积极的作用.
  • 加载中
  • [1] Horikoshi S, Miura T, Kajitani M, et al. Photodegradation of tetrahalobisphenol-A (X=Cl, Br) flame retardants and delineation of factors affecting the process[J]. Applied Catalysis B-Environmental, 2008, 84(3/4): 797-802
    [2] Blanco E, Casais M C, Mejuto M C, et al. Approaches for the simultaneous extraction of tetrabromobisphenol A, tetrachlorobisphenol A, and related phenolic compounds from sewage sludge and sediment samples based on matrix solid-phase dispersion[J]. Analytical Chemistry, 2006, 78(8): 2772-2778
    [3] Sun H, Shen O X, Wang X R, et al. Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay[J]. Toxicology In Vitro, 2009, 23(5): 950-954
    [4] Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical And Biophysical Research Communications, 2002, 293(PⅡ S0006-291X(02)00262-01): 554-559
    [5] Meerts I, Van Zanden J J, Luijks E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro[J]. Toxicological Sciences, 2000, 56(1): 95-104
    [6] Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of china: comparison to the parent compounds[J]. Environmental science & technology, 2013, 47(19): 10841-10850
    [7] Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 185-190
    [8] Voordeckers J W, Fennell D E, Jones K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments[J]. Environmental Science & Technology, 2002, 36(4): 696-701
    [9] 彭平安, 盛国英, 傅家谟.电子垃圾的污染问题[J]. 化学进展, 2009, (Z1): 550-557
    [10] 刘艳, 党志, 刘云.一株硫酸盐还原菌DSRBa的分离鉴定及特性分析[J]. 农业环境科学学报, 2011, (01): 176-182
    [11] 左剑恶, 肖晶华, 陈莉莉.氯代有机污染物在厌氧条件下还原脱氯的研究进展[J]. 环境污染治理技术与设备, 2003, (06): 43-48
    [12] 吴宇澄, 王建军, 吴庆龙.基于引物的湖泊沉积物氨氧化细菌PCR扩增策略比较[J]. 环境科学, 2010, (09): 2178-2183
    [13] Geets J, Borrernans B, Diels L, et al. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J]. Journal of Microbiological Methods, 2006, 66(2): 194-205
    [14] Wagner M, Roger A J, Flax J L, et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J]. Journal of Bacteriology, 1998, 180(11): 2975-2982
    [15] Livak K J, Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods, 2001, 25(4): 402-408
    [16] Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review[J]. Chemosphere, 1997, 35(4): 667-749
    [17] 刘文莉, 张珍, 朱连秋, 等.电子垃圾拆解地区土壤和植物中邻苯二甲酸酯分布特征[J]. 应用生态学报, 2010, (02): 489-494
    [18] Nyholm J R, Lundberg C, Andersson P L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil[J]. Environmental Pollution, 2010, 158(6SI): 2235-2240
    [19] 丁维新, 蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672-1679
    [20] 夏大平, 陈鑫, 苏现波.氧化还原电位对低煤阶煤生物甲烷生成的影响[J]. 天然气工业, 2012, (11): 107-110, 125

    -126

    [21] 张希衡. 废水生物处理工程[M].北京: 中国环境科学出版社, 1984:15-23
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览数:  857
  • PDF下载数:  751
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-04
刘世诚, 李玲玲, 任源, 黄志立, 张丽君. 河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响[J]. 环境化学, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
引用本文: 刘世诚, 李玲玲, 任源, 黄志立, 张丽君. 河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响[J]. 环境化学, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
LIU Shicheng, LI Lingling, REN Yuan, HUANG Zhili, ZHANG Lijun. Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation[J]. Environmental Chemistry, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021
Citation: LIU Shicheng, LI Lingling, REN Yuan, HUANG Zhili, ZHANG Lijun. Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation[J]. Environmental Chemistry, 2014, 33(6): 915-922. doi: 10.7524/j.issn.0254-6108.2014.06.021

河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响

  • 1.  华南理工大学环境与能源学院, 广州, 510006;
  • 2.  深圳职业技术学院应用化学与生物技术学院, 深圳, 518055
基金项目:

国家自然科学基金51178190;广州市科信局应用基础研究项目2013J4100107;教育部留学回国人员科研启动基金资助.

摘要: 本文采用血清瓶实验研究了贵屿镇练江底泥TCBPA的厌氧降解特性以及该过程中硫酸盐还原菌的变化情况.结果表明,在不同还原条件下,TCBPA 降解效率顺序为:产甲烷环境>硫酸盐还原环境>接种控制,对应降解速率常数分别为:0.0844 d-1、0.0694 d-1、0.0561 d-1,半衰期分别为:8.2 d、10.0 d、12.4 d.与接种控制组相比,加入电子供体可加速TCBPA降解,降解速率常数可达0.0722 d-1,半衰期为9.6 d.加入邻苯二甲酸丁酯后,TCBPA降解受到抑制,降解速率常数为0.0491 d-1,半衰期为14.1 d.使用Comparative Ct法进行荧光定量PCR实验,结果表明硫酸盐还原菌在TCBPA降解过程中起到了积极的作用.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回