河道底泥中四氯双酚A的厌氧降解及硫酸盐还原菌对其降解效率的影响
Anaerobic biodegradation of TCBPA in river sediment and the role of Sulfate Reducing Bacteria (SRB) in TCBPA’s degradation
-
摘要: 本文采用血清瓶实验研究了贵屿镇练江底泥TCBPA的厌氧降解特性以及该过程中硫酸盐还原菌的变化情况.结果表明,在不同还原条件下,TCBPA 降解效率顺序为:产甲烷环境>硫酸盐还原环境>接种控制,对应降解速率常数分别为:0.0844 d-1、0.0694 d-1、0.0561 d-1,半衰期分别为:8.2 d、10.0 d、12.4 d.与接种控制组相比,加入电子供体可加速TCBPA降解,降解速率常数可达0.0722 d-1,半衰期为9.6 d.加入邻苯二甲酸丁酯后,TCBPA降解受到抑制,降解速率常数为0.0491 d-1,半衰期为14.1 d.使用Comparative Ct法进行荧光定量PCR实验,结果表明硫酸盐还原菌在TCBPA降解过程中起到了积极的作用.Abstract: In this research, serum bottle experiments were established to investigate the anaerobic transformation of TCBPA with Lianjiang River sediments (Guiyu Town, Guangdong Province), and the changes of sulfate-reducing bacteria (SRB) in this process. The results showed that the order of anaerobic degradation rates of TCBPA in the sediments under different reducing conditions was methanogenic condition> sulfate-reducing condition> inoculated control. The degradation rate constants of each condition were 0.0844 d-1, 0.0694 d-1, and 0.0561 d-1, while their half-lives were 8.2 d, 10.0 d, and 12.4 d, respectively. The degradation rate of TCBPA was enhanced by the addition of electron donors. Compared with the inoculated control sample, the degradation rate constant increased to 0.0722 d-1 and the half-life decreased to 9.6 d. On the other hand, the degradation was inhibited by the addition of butyl phthalate. The degradation rate constant decreased to 0.0491 d-1, and the half-life increased to 14.1 d. Real time PCR experiment proved the positive role of SRB in the process of TCBPA degradation.
-
-
[1] Horikoshi S, Miura T, Kajitani M, et al. Photodegradation of tetrahalobisphenol-A (X=Cl, Br) flame retardants and delineation of factors affecting the process[J]. Applied Catalysis B-Environmental, 2008, 84(3/4): 797-802 [2] Blanco E, Casais M C, Mejuto M C, et al. Approaches for the simultaneous extraction of tetrabromobisphenol A, tetrachlorobisphenol A, and related phenolic compounds from sewage sludge and sediment samples based on matrix solid-phase dispersion[J]. Analytical Chemistry, 2006, 78(8): 2772-2778 [3] Sun H, Shen O X, Wang X R, et al. Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay[J]. Toxicology In Vitro, 2009, 23(5): 950-954 [4] Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical And Biophysical Research Communications, 2002, 293(PⅡ S0006-291X(02)00262-01): 554-559 [5] Meerts I, Van Zanden J J, Luijks E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro[J]. Toxicological Sciences, 2000, 56(1): 95-104 [6] Fan Z L, Hu J Y, An W, et al. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of china: comparison to the parent compounds[J]. Environmental science & technology, 2013, 47(19): 10841-10850 [7] Yuan S Y, Chen S J, Chang B V. Anaerobic degradation of tetrachlorobisphenol-A in river sediment[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 185-190 [8] Voordeckers J W, Fennell D E, Jones K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments[J]. Environmental Science & Technology, 2002, 36(4): 696-701 [9] 彭平安, 盛国英, 傅家谟.电子垃圾的污染问题[J]. 化学进展, 2009, (Z1): 550-557 [10] 刘艳, 党志, 刘云.一株硫酸盐还原菌DSRBa的分离鉴定及特性分析[J]. 农业环境科学学报, 2011, (01): 176-182 [11] 左剑恶, 肖晶华, 陈莉莉.氯代有机污染物在厌氧条件下还原脱氯的研究进展[J]. 环境污染治理技术与设备, 2003, (06): 43-48 [12] 吴宇澄, 王建军, 吴庆龙.基于引物的湖泊沉积物氨氧化细菌PCR扩增策略比较[J]. 环境科学, 2010, (09): 2178-2183 [13] Geets J, Borrernans B, Diels L, et al. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J]. Journal of Microbiological Methods, 2006, 66(2): 194-205 [14] Wagner M, Roger A J, Flax J L, et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J]. Journal of Bacteriology, 1998, 180(11): 2975-2982 [15] Livak K J, Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods, 2001, 25(4): 402-408 [16] Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review[J]. Chemosphere, 1997, 35(4): 667-749 [17] 刘文莉, 张珍, 朱连秋, 等.电子垃圾拆解地区土壤和植物中邻苯二甲酸酯分布特征[J]. 应用生态学报, 2010, (02): 489-494 [18] Nyholm J R, Lundberg C, Andersson P L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil[J]. Environmental Pollution, 2010, 158(6SI): 2235-2240 [19] 丁维新, 蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672-1679 [20] 夏大平, 陈鑫, 苏现波.氧化还原电位对低煤阶煤生物甲烷生成的影响[J]. 天然气工业, 2012, (11): 107-110, 125 -126
[21] 张希衡. 废水生物处理工程[M].北京: 中国环境科学出版社, 1984:15-23 -

计量
- 文章访问数: 857
- HTML全文浏览数: 857
- PDF下载数: 751
- 施引文献: 0