多氯联苯微生物厌氧脱氯研究进展

许妍, 傅大放. 多氯联苯微生物厌氧脱氯研究进展[J]. 环境化学, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
引用本文: 许妍, 傅大放. 多氯联苯微生物厌氧脱氯研究进展[J]. 环境化学, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
XU Yan, FU Dafang. A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls[J]. Environmental Chemistry, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
Citation: XU Yan, FU Dafang. A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls[J]. Environmental Chemistry, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017

多氯联苯微生物厌氧脱氯研究进展

  • 基金项目:

    国家自然科学基金项目(41301546);水体污染控制与治理科技重大专项(2012ZX07101-008);江苏省太湖治理科研课题(TH2012207)资助.

A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls

  • Fund Project:
  • 摘要: 多氯联苯是一种典型的持久性有机污染物,其在环境中的转化归趋备受关注.在厌氧条件下,多氯联苯可以通过微生物脱氯进行降解,该降解方式虽然广泛存在于自然界中,但是受生物地球化学因素的影响较大,调控较为复杂.本文对多氯联苯的厌氧微生物脱氯降解进行综述,讨论了脱氯路径和自然界中8种主要脱氯历程;脱氯微生物及相关的微生物还原脱卤酶;影响脱氯速率、程度和历程的主要物理和地球化学因素(温度、pH和氧化还原水平、碳源、电子受体、电子供体及抑制物).最后分析了多氯联苯厌氧脱氯研究中存在的问题并对其前景进行展望.
  • 加载中
  • [1] Brown J F, Bedard D L, Brennan M J, et al. Polychlorinated biphenyl dechlorination in aquatic sediments[J]. Science, 1987, 236(4802): 709-712
    [2] Safe S. Polychlorinated biphenyls (PCBs): Mutagenicity and carcinogenicity[J]. Mutat Res, 1989, 220(1):31-47
    [3] Xu Y, Yu R, Zhang X, et al. Effects of PCBs and MeSO2-PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells[J]. Chemosphere, 2006, 63(5): 772-784
    [4] Breivik K, Sweetman A, Pacyna J M, et al. Towards a global historical emission inventory for selected PCB congeners-A mass balance approach 1. Global production and consumption[J]. Sci Total Environ, 2002, 290(1/3): 181-198
    [5] Hughes A S, Vanbriesen J M, Small M J. Identification of structural properties associated with polychlorinated biphenyl dechlorination processes[J]. Environ Sci Technol, 2010, 44(8): 2842-2848
    [6] Wu Q Z, Bedard D L, Wiegel J. Effect of incubation temperature on the route of microbial reductive dechlorination of 2, 3, 4, 6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments[J]. Appl Environ Microbiol, 1997, 63(7): 2836-2843
    [7] Cutter L, Sowers K R, May H D. Microbial dechlorination of 2, 3, 5, 6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment[J]. Appl Environ Microbiol, 1998, 64(8): 2966-2969
    [8] Kuipers B, Cullen W R, Mohn W W. Reductive dechlorination of nonachlorobiphenyls and selected octachlorobiphenyls by microbial enrichment cultures[J]. Environ Sci Technol, 1999, 33(20): 3579-3585
    [9] Brown J F, Wagner R E, Feng H, et al. Environmental dechlorination of PCBs[J]. Environ Toxicol Chem, 1987, 6(8): 579-593
    [10] Bedard D L, Quensen J F. Microbial reductive dechlorination of polychlorinated biphenyls//Microbial Transformation and Degradation of Toxic Organic Chemicals[M]. New York: Wiley-Liss, Inc, 1995:127-216
    [11] Quensen J F, Boyd S A, Tiedje J M. Dechlorination of 4 commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments[J]. Appl Environ Microbiol, 1993, 56(8): 2360-2369
    [12] Bedard D L, VanDort H M, May R J, et al. Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment[J]. Environ Sci Technol, 1997, 31(11): 3308-3313
    [13] VanDort H M, Smullen L A, May R J, et al. Priming microbial meta-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades[J]. Environ Sci Technol, 1997, 31(11): 3300-3307
    [14] Wu Q Z, Bedard D L, Wiegel J. Temperature determines the pattern of anaerobic microbial dechlorination of Aroclor 1260 primed by 2, 3, 4, 6-tetrachlorobiphenyl in Woods Pond sediment[J]. Appl Environ Microbiol, 1997, 63(12): 4818-4825
    [15] Bedard D L, Pohl E A, Bailey J J, et al. Characterization of the PCB substrate range of microbial dechlorination process LP[J]. Environ Sci Technol, 2005, 39(17): 6831-6838
    [16] Wiegel J, Wu Q Z. Microbial reductive dehalogenation of polychlorinated biphenyls[J]. FEMS Microbiol Ecol, 2000, 32(1): 1-15
    [17] Löffler F E, Cole J R, Ritalahti K M, et al. Diversity of dechloronating bacteria//Dehalogenation: microbial processes and environmental applications[M]. Bsoton: Kluwer Academic, 2003:53-87
    [18] Park J W, Krumins V, Kjellerup B V, et al. The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms[J]. Appl Microbiol Biotechnol, 2011, 89(6): 2005-2017
    [19] Rhee G Y, Bush B, Bethoney C M, et al. Anaerobic dechlorination of Aroclor 1242 as affected by some environmental-conditions[J]. Environ Toxicol Chem, 1993, 12(6): 1033-1039
    [20] Assafanid N, Nies L, Vogel T M. Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin-B12[J]. Appl Environ Microbiol, 1992, 58(3): 1057-1060
    [21] Yan T, LaPara T M, Novak P J. The impact of sediment characteristics on polychlorinated biphenyl-dechlorinating cultures: Implications for bioaugmentation[J]. Biorem J, 2006, 10(4): 143-151
    [22] Adrian L, Dudkova V, Demnerova K, et al. "Dehalococcoides" sp strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260[J]. Appl Environ Microbiol, 2009, 75(13): 4516-4524
    [23] Pulliam Holoman T R, Elberson M A, Cutter L A, et al. Characterization of a defined 2, 3, 5, 6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1998, 64(9): 3359-3367
    [24] Watts J E M, Wu Q Z, Schreier S B, et al. Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques[J]. Environ Microbiol, 2001, 3(11):710-719
    [25] Wu Q Z, Sowers K R, May H D. Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium[J]. Appl Environ Microbiol, 2000, 66(1): 49-53
    [26] May H D, Miller G S, Kjellerup B V, et al. Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium[J]. Appl Environ Microbiol, 2008, 74(7): 2089-2094
    [27] Fennell D E, Nijenhuis I, Wilson S F, et al. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants[J]. Environ Sci Technol, 2004, 38(7): 2075-2081
    [28] Xu Y, Yu Y, Gregory K B, et al. Comprehensive assessment of bacterial communities and analysis of PCB congeners in PCB-contaminated sediment with depth[J]. J Environ Eng-ASCE, 2012, 138(12):1167-1178
    [29] Ritalahti K M, Amos B K, Sung Y, et al. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains[J]. Appl Environ Microbiol, 2006, 72(4): 2765-2774
    [30] Holscher T, Krajmalnik-Brown R, Ritalahti K M, et al. Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides[J]. Appl Environ Microbiol, 2004, 70(9): 5290-5297
    [31] Wu Q Z, Bedard D L, Wiegel J. Influence of incubation temperature on the microbial reductive dechlorination of 2, 3, 4, 6-tetrachlorobiphenyl in two freshwater sediments[J]. Appl Environ Microbiol, 1996, 62(11): 4174-4179
    [32] Tiedje J M, Iii J F Q, Chee-Sanford J, et al. Microbial reductive dechlorination of PCBs[J]. Biodegradation, 1993, 4(4): 231-240
    [33] Jota M A, Hassett J P. Effects of environmental variables on binding of a PCB congener by dissolved humic substances[J]. Environ Toxicol Chem, 1991, 10(4): 483-491
    [34] May H D, Boyle A W, Price W A, et al. Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media[J]. Appl Environ Microbiol, 1992, 58(12): 4051-4054
    [35] Morris P J, Mohn W W, Quensen J F, et al. Establishment of a polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination[J]. Appl Environ Microbiol, 1992, 58(9): 3088-3094
    [36] Alder A C, Haggblom M M, Oppenhelmer S R, et al. Reductive dechlorination of polychlorinated-biphenyls in anaerobic sediments[J]. Environ Sci Technol, 1993, 27(3): 530-538
    [37] Yan T, LaPara T M, Novak P J. The effect of varying levels of sodium bicarbonate on polychlorinated biphenyl dechlorination in Hudson River sediment cultures[J]. Environ Microbiol, 2006, 8(7): 1288-1298
    [38] Kjellerup B V, Sun X L, Ghosh U, et al. Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities[J]. Environ Microbiol, 2008, 10(5): 1296-1309
    [39] Nies L, Vogel T M. Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments[J]. Appl Environ Microbiol, 1990, 56(9): 2612-2617
    [40] Chang B V, Liu W G, Yuan S Y. Microbial dechlorination of three PCB congeners in river sediment[J]. Chemosphere, 2001, 45(6/7): 849-856
    [41] Ho C H, Liu S M. Impact of coplanar PCBs on microbial communities in anaerobic estuarine sediments[J]. J Environ Sci Health Part B, 2010, 45(5): 437-448
    [42] Watts J E M, Fagervold S K, May H D, et al. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls[J]. Microbiol-SGM, 2005, 151: 2039-2046
    [43] Krumins V, Park J W, Son E K, et al. PCB dechlorination enhancement in Anacostia River sediment microcosms[J]. Water Res, 2009, 43(18): 4549-4558
    [44] Cho Y C, Oh K H. Effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls in estuarine sediments[J]. J Microbiol, 2005, 43(2): 166-171
    [45] Rysavy J P, Yan T, Novak P J. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source[J]. Water Res, 2005, 39(4): 569-578
    [46] Zwiernik M J, Quensen J F, Boyd S A. FeSO4 amendments stimulate extensive anaerobic PCB dechlorination[J]. Environ Sci Technol, 1998, 32(21): 3360-3365
    [47] Ye D Y, Quensen J F, Tiedje J M, et al. Evidence for para dechlorination of polychlorobipenyls by methanogenic bacteria[J]. Appl Environ Microbiol, 1995, 61(6): 2166-2171
  • 加载中
计量
  • 文章访问数:  1515
  • HTML全文浏览数:  1515
  • PDF下载数:  1309
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-10
许妍, 傅大放. 多氯联苯微生物厌氧脱氯研究进展[J]. 环境化学, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
引用本文: 许妍, 傅大放. 多氯联苯微生物厌氧脱氯研究进展[J]. 环境化学, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
XU Yan, FU Dafang. A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls[J]. Environmental Chemistry, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017
Citation: XU Yan, FU Dafang. A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls[J]. Environmental Chemistry, 2014, 33(6): 908-914. doi: 10.7524/j.issn.0254-6108.2014.06.017

多氯联苯微生物厌氧脱氯研究进展

  • 1. 东南大学土木工程学院, 南京, 210096
基金项目:

国家自然科学基金项目(41301546);水体污染控制与治理科技重大专项(2012ZX07101-008);江苏省太湖治理科研课题(TH2012207)资助.

摘要: 多氯联苯是一种典型的持久性有机污染物,其在环境中的转化归趋备受关注.在厌氧条件下,多氯联苯可以通过微生物脱氯进行降解,该降解方式虽然广泛存在于自然界中,但是受生物地球化学因素的影响较大,调控较为复杂.本文对多氯联苯的厌氧微生物脱氯降解进行综述,讨论了脱氯路径和自然界中8种主要脱氯历程;脱氯微生物及相关的微生物还原脱卤酶;影响脱氯速率、程度和历程的主要物理和地球化学因素(温度、pH和氧化还原水平、碳源、电子受体、电子供体及抑制物).最后分析了多氯联苯厌氧脱氯研究中存在的问题并对其前景进行展望.

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回