基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制

张海勤, 谢宏彬, 陈景文, 张树深. 基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制[J]. 环境化学, 2015, 34(9): 1594-1600. doi: 10.7524/j.issn.0254-6108.2015.09.2015041101
引用本文: 张海勤, 谢宏彬, 陈景文, 张树深. 基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制[J]. 环境化学, 2015, 34(9): 1594-1600. doi: 10.7524/j.issn.0254-6108.2015.09.2015041101
ZHANG Haiqin, XIE Hongbin, CHEN Jingwen, ZHANG Shushen. Effects of Cu2+ complexation on the structure and hydrolysis of cephradine using density functional theory[J]. Environmental Chemistry, 2015, 34(9): 1594-1600. doi: 10.7524/j.issn.0254-6108.2015.09.2015041101
Citation: ZHANG Haiqin, XIE Hongbin, CHEN Jingwen, ZHANG Shushen. Effects of Cu2+ complexation on the structure and hydrolysis of cephradine using density functional theory[J]. Environmental Chemistry, 2015, 34(9): 1594-1600. doi: 10.7524/j.issn.0254-6108.2015.09.2015041101

基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制

  • 基金项目:

    国家重点基础研究发展计划(2013CB430403)和国家自然科学基金(21137001,21325729)资助.

Effects of Cu2+ complexation on the structure and hydrolysis of cephradine using density functional theory

  • Fund Project:
  • 摘要: 基于密度泛函理论(DFT, Density functional theory),计算了水中Cu2+与抗生素头孢拉定的配位作用,发现Cu2+与头孢拉定可形成1:1配合物,该配合物存在两种形态:Cu2+与头孢拉定分子支链氨基氮原子和羰基氧原子配位,同时结合一个水分子;Cu2+与羧基氧原子和内酰胺氧原子配位,同时结合两个水分子.结果表明,Cu2+的配位作用能增大头孢拉定水解反应位点正电荷量,降低水解前线分子轨道能级差和活化能,从而促进头孢拉定水解,该结果得到了实验证实.因此,DFT可用于预测Mn+配位作用对药物和个人护理用品(PPCPs, Pharmaceutical and personal care products)等有机污染物水解的影响,对于PPCPs类有机污染物的生态风险评价具有重要意义.
  • 加载中
  • [1] Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers[J]. Water Research, 1998, 32:3245-3260
    [2] Halling S B, Nors N S, et al. Occurrence, Fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere, 1998, 36:357-393
    [3] Remington J P, Troy D B, Remington Br P. The science and practice of pharmacy[M]. Maryland:Lippincott Williams & Wilkins, 2006:359-469
    [4] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry[M]. Canada:John Wiley & Sons, 2003:706-715, 489-554
    [5] Werner J J, Arnold W A, McNeill K. Water hardness as a photochemical parameter:Tetracycline photolysis as a function of calcium concentration,magnesium concentration, and pH[J]. Environmental Science Technology, 2006, 40(23):7236-7241
    [6] Vione D, Feitosa F J, Minero C, et al. Phototransformation of selected human-used macrolides in surface water:Kinetics, model predictions and degradation pathways[J].Water Research, 2009, 43(7):1959-1967
    [7] Najma S, Arayne M S. In vitro activity of cefadroxil, cephalexin, cefatrizine and cefpirome in presence of essential and trace elements[J]. Pakistan Journal of Pharmarmaceutical Sciences, 2007, 20(4):305-310
    [8] Huang C H, Stone A T. Hydrolysis of naptalam and structurally related amides:In hibition by dissolved metal ions and metal(hydr) oxide surafces[J]. Journal of Agricultural and Food Chemistry, 1999, 47:4425-4434
    [9] Eric L H, Stephen H M, Chin L C, et al. Structure-reactivity studies in copper(Ⅱ)-Catalyzed phosphodiester hydrolysis[J]. Inorganic Chemistry, 1999, 38:2961-2968
    [10] Díaz N, Sordo T L, Suárez D, et al. Zn2+ catalysed hydrolysis of β-lactams:Experimental and theoretical studies on the influence of the β-lactam structure[J]. New Journal of Chemistry, 2003, 28:15-25
    [11] 华中师范大学等. 分析化学(下册)[M]. 北京:高等教育出版社, 2001:32-49,242-257
    [12] Hernowo E, Artik E A, Fazary A E, et al. Complex stability and molecular structure studies of divalent metal Ion with L-Norleucine and Vitamin B3[J]. Journal of Chemical & Engineering Data, 2011, 56:4549-4555
    [13] Zhang H, Xie H, Chen J, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions:A quantum chemical study on cephradine[J]. Environmental Science Technology, 2015, 49:1552-1558
    [14] Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the environment:Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin[J]. Environmental Science Technology, 2004, 38:6832-6838
    [15] Lin A Y C, Yu T H, Lin C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams:Risk to aqueous environments in Taiwan[J]. Chemosphere, 2008, 74 (1):131-141
    [16] 尉小旋, 陈景文, 王如冰, 等. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3):448-454
    [17] Lozano M J, Bomi J. Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(Ⅱ) and Cd(Ⅱ) ions[J]. Journal of Inorganic Biochemistry, 1987, 9(7):187-195
    [18] Fazakerley G V, Jackson G E. Metal ion coordination by some penicillin and cephalosporin and antibiotics[J]. Journal of Inorganic and Nuclear Chemistry, 1975, 37:2371-2375
    [19] El-Said A I, Aly A A M, EI-Meligy M S, et al. Mixed ligand zinc(Ⅱ) and cadmium(Ⅱ) complexes containing ceftriaxone antibiotics and different donors[J]. J The Journal of the Argentine Chemical Society, 2009, 97(2):149-165
    [20] Bukhari H, Arif M, Akbar J. Preparation, characterization and biological evaluation of Schiff base transition metal complexes with cephradine[J]. Pakistan Journal of Biological Sciences, 2005, 8(4):614-617
    [21] Anacona J R, Faricar A. Synthesis and antibacterial activity of cephradine metal complexes[J]. Journal of Coordination Chemistry, 2006, 59(6):621-627
    [22] Jeffrey H P, Willard W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1):270-283
    [23] Yang Y, Weaver M N, Merz K M. Assessment of the "6-31+G**+LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential:Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes[J]. Journal of Physical Chemistry A, 2009, 113 (36):9843-9851
    [24] Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8):2999-3093
    [25] Mennucci B. Continuum solvation models:What else can we learn from them?[J]. The Journal of Physical Chemistry Letters, 2010, 1 (10):1666-1674
    [26] 戴安邦. 配位化学[M]. 北京:科学出版社, 1988:20-40
    [27] Frison G, Ohanessian G. A comparative study of semi empirical, Ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-Biomimetic complexes[J]. Journal of Computational Chemistry, 2008, 29:416-433
    [28] Smith M B. March's advanced organic chemistry:Reactions, mechanisms and structure(7th ed)[M]. New Jersey:John Wiley & Sons, 2013:348-495
  • 加载中
计量
  • 文章访问数:  1138
  • HTML全文浏览数:  1056
  • PDF下载数:  621
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-11
  • 刊出日期:  2015-09-15

基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制

  • 1. 工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连, 116024
基金项目:

国家重点基础研究发展计划(2013CB430403)和国家自然科学基金(21137001,21325729)资助.

摘要: 基于密度泛函理论(DFT, Density functional theory),计算了水中Cu2+与抗生素头孢拉定的配位作用,发现Cu2+与头孢拉定可形成1:1配合物,该配合物存在两种形态:Cu2+与头孢拉定分子支链氨基氮原子和羰基氧原子配位,同时结合一个水分子;Cu2+与羧基氧原子和内酰胺氧原子配位,同时结合两个水分子.结果表明,Cu2+的配位作用能增大头孢拉定水解反应位点正电荷量,降低水解前线分子轨道能级差和活化能,从而促进头孢拉定水解,该结果得到了实验证实.因此,DFT可用于预测Mn+配位作用对药物和个人护理用品(PPCPs, Pharmaceutical and personal care products)等有机污染物水解的影响,对于PPCPs类有机污染物的生态风险评价具有重要意义.

English Abstract

参考文献 (28)

目录

/

返回文章
返回